An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme

Olivier Pironneau

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 213 -232.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 213 -232. DOI: 10.1007/s11401-018-1061-9
Article

An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme

Author information +
History +
PDF

Abstract

The conservation laws of continuum mechanics, written in an Eulerian frame, do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions (FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.

Keywords

Fluid-Structure interactions / Numerical method / Energy stability / Finite element method

Cite this article

Download citation ▾
Olivier Pironneau. An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme. Chinese Annals of Mathematics, Series B, 2018, 39(2): 213-232 DOI:10.1007/s11401-018-1061-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antman S. S.. Nonlinear Problems of Elasticity, 2005 2 New York: Springer-Verlag

[2]

Bathe K. J.. Finite Element Procedures, 1996, Englewood Cliffs, NJ: Prentice-Hall

[3]

Bathe K. J., Ramm E., Wilson E. L.. Finite element formulations for large deformation dynamic analysis. Int. J. Numer. Methods Eng., 1975, 9(2): 353-386

[4]

Boffi D., Brezzi F., Fortin M.. Mixed Finite Element Methods and Applications, Computational Mathematics, 2013, Berlin: Springer-Verlag

[5]

Boffi D., Cavallini N., Gastaldi L.. The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal., 2015, 53(6): 2584-2604

[6]

Boulakia M.. Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. C. R. Math. Acad. Sci. Paris, 2003, 336(12): 985-990

[7]

Bukaca M., Canic S., Glowinski R. Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics, 2013, 235: 515-541

[8]

Chiang C.-Y., Pironneau O., Sheu T., Thiriet M.. Numerical study of a 3D Eulerian monolithic formulation for fluid-structure-interaction. Fluids, 2017

[9]

Ciarlet P. G.. Mathematical Elasticity, I., Three-dimensional Elasticity, 1988, Amsterdam: North Holland

[10]

Cottet G. H., Maitre E., Milcent T.. Eulerian formulation and level set models for incompressible fluid-structure interaction. M2AN Math. Model. Numer. Anal., 2008, 42(3): 471-492

[11]

Coupez T., Silva L., Hachem E.. Implicit Boundary and Adaptive Anisotropic Meshes, New challenges in Grid Generation and Adaptivity for Scientific Computing, 2015, Cham: Springer-Verlag

[12]

Coutand D., Shkoller S.. Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal., 2005, 176(1): 25-102

[13]

Dunne T.. Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation, 2006, The Netherlands: Elsevier, TU Delft

[14]

Dunne T.. An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation. Int. J. Numer. Meth. Fluids, 2006, 51: 1017-1039

[15]

Dunne Th., Rannacher R.. Bungartz H.-J., Schaefer M.. Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation. Fluid-Structure Interaction: Modelling, Simulation, Optimization, 2006, Berlin: Springer-Verlag 110-146

[16]

Fernandez M. A., Mullaert J., Vidrascu M.. Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comp. Methods in Applied Mech. and Engg., 2013, 267: 566-593

[17]

Formaggia L., Quarteroni A., Veneziani A.. Alessandro Multiscale Models of the Vascular System, Cardiovasuclar Mathematics, 2009, Milan: Springer-Verlag, Italia 395-446

[18]

Hecht F.. New development in FreeFem++. J. Numer. Math., 2012, 20: 251-265

[19]

Hecht F., Pironneau O.. An energy stable monolithic Eulerian fluid-structure finite element method. International Journal for Numerical Methods in Fluids, 2017, 85(7): 430-446

[20]

Change H., Matthias to Heil M.. Solvers for large-displacement fluid structure interaction problems: Segregated versus monolithic approaches. Comput. Mech., 2008, 43: 91-101

[21]

Hron J., Turek S.. Wesseling P., Onate E., Periaux J.. A monolithic fem solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking. European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006, The Netherlands: TU Delft

[22]

Léger S.. Méthode lagrangienne actualisée pour des problèmes hyperélastiques en très grandes déformations, 2014

[23]

Le Tallec P., Hauret P.. Neittanmaki P., Kuznetsov Y., Pironneau O.. Energy conservation in Fluid-Structure Interactions. Numerical Methods for Scientific Computing, Variational Problems And Applications, 2003, Barcelona: CIMNE

[24]

Le Tallec P., Mouro J.. Fluid structure interaction with large structural displacements. Comp. Meth. Appl. Mech. Eng., 2001, 190(24–25): 3039-3068

[25]

Liu J.. A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near-contact of structures. Journal of Computational Physics, 2016, 304: 380-423

[26]

Liu I.-S., Cipolatti R., Rincon M. A.. Incremental Linear Approximation for Finite Elasticity, 2006, Wiley: Proc. ICNAAM

[27]

Marsden J., Hughes T. J. R.. Mathematical Foundations of Elasticity, 1994, New York: Dover Publications

[28]

Nobile F., Vergara C.. An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comp., 2008, 30(2): 731-763

[29]

Peskin C. S.. The immersed boundary method. Acta Numerica, 2002, 11: 479-517

[30]

Pironneau O.. Numerical Study of a Monolithic Fluid-Structure Formulation, Variational Analysis and Aerospace Engineering, 2016, Cham: Springer-Verlag

[31]

Rannacher R., Richter T.. An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation, Lecture Notes in Computational Science and Engineering, 2010, Heidelberg: Springer-Verlag

[32]

Raymond J.-P., Vanninathan M.. A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl., 2014, 102: 546-596

[33]

Richter Th., Wick Th.. Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Engrg., 2010, 199: 2633-2642

[34]

Wang Y. X.. The Accurate and Efficient Numerical Simulation of General Fluid Structure Interaction: A Unified Finite Element Method, Proc. Conf. on FSI problems, 2016, Singapore: IMS-NUS

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/