Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation

Jixun Chu , Jean-Michel Coron , Peipei Shang , Shu-Xia Tang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 201 -212.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 201 -212. DOI: 10.1007/s11401-018-1060-x
Article

Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation

Author information +
History +
PDF

Abstract

In this paper, the authors consider the Gevrey class regularity of a semigroup associated with a nonlinear Korteweg-de Vries (KdV for short) equation. By estimating the resolvent of the corresponding linear operator, the authors conclude that the semigroup generated by the linear operator is not analytic but of Gevrey class δ ∈ (3/2, ∞) for t > 0.

Keywords

Korteweg-de Vries equation / Resolvent estimation / Analytic semigroup / Gevrey class

Cite this article

Download citation ▾
Jixun Chu, Jean-Michel Coron, Peipei Shang, Shu-Xia Tang. Gevrey Class Regularity of a Semigroup Associated with a Nonlinear Korteweg-de Vries Equation. Chinese Annals of Mathematics, Series B, 2018, 39(2): 201-212 DOI:10.1007/s11401-018-1060-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belinskiy B., Lasiecka I.. Gevrey’s and trace regularity of a semigroup associated with beam equation and non-monotone boundary conditions. J. Math. Anal. Appl., 2007, 332(1): 137-154

[2]

Chu J. X., Coron J.-M., Shang P.. Asymptotical stability of a nonlinear Korteweg-de Vries equation with critical lengths. J. Diff. Eq., 2015, 259(8): 4045-4085

[3]

Coron J.-M.. Control and nonlinearity, Mathematical Surveys and Monographs, 2007, Providence, RI: American Mathematical Society

[4]

Pazy A.. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 1983, New York: Springer-Verlag

[5]

Perla Menzala G., Vasconcellos C. F., Zuazua E.. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math., 2002, 60(1): 111-129

[6]

Rosier L.. Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var., 1997, 2: 33-55

[7]

Tang S.-X., Chu J. X., Shang P., Coron J.-M.. Asymptotic stability of a Korteweg-de Vries equation with a two-dimensional center manifold. Adv. Nonlinear Anal., 2016

[8]

Taylor S.. Gevrey regularity of solutions of evolution equations and boundary controllability, Gevrey semigroups, 1989

[9]

Zhang Q., Wang J.-M., Guo B.-Z.. Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation. Math. Control Signals Systems, 2014, 26(1): 77-118

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/