On Problems in the Calculus of Variations in Increasingly Elongated Domains

Hervé Le Dret , Amira Mokrane

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 163 -182.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 163 -182. DOI: 10.1007/s11401-018-1058-4
Article

On Problems in the Calculus of Variations in Increasingly Elongated Domains

Author information +
History +
PDF

Abstract

This paper deals with minimization problems in the calculus of variations set in a sequence of domains, the size of which tends to infinity in certain directions and such that the data only depend on the coordinates in the directions that remain constant. The authors study the asymptotic behavior of minimizers in various situations and show that they converge in an appropriate sense toward minimizers of a related energy functional in the constant directions.

Keywords

Calculus of variations / Domains becoming unbounded / Asymptotic behavior / Exponential rate of convergence

Cite this article

Download citation ▾
Hervé Le Dret, Amira Mokrane. On Problems in the Calculus of Variations in Increasingly Elongated Domains. Chinese Annals of Mathematics, Series B, 2018, 39(2): 163-182 DOI:10.1007/s11401-018-1058-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Attouch H., Aze D.. Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 1993, 10: 289-312

[2]

Ball J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 1977, 63: 337-403

[3]

Ball J. M., Marsden J. E.. Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rat. Mech. Anal., 1984, 86: 251-277

[4]

Chipot M.. ℓ Goes to Plus Infinity, 2002, Basel, Boston, Berlin: Birkhäuser

[5]

Chipot M.. On the asymptotic behaviour of some problems of the calculus of variations. J. Elliptic Parabol. Equ., 2015, 1: 307-323

[6]

Chipot M.. Asymptotic Issues for Some Partial Differential Equations, 2016, London: Imperial College Press

[7]

Chipot M., Mojsic A., Roy P.. On some variational problems set on domains tending to infinity. Discrete Contin. Dyn. Syst., 2016, 36(7): 3603-3621

[8]

Chipot M., Rougirel A.. Sur le comportement asymptotique de la solution de problèmes elliptiques dans des domaines cylindriques tendant vers l’infini. C. R. Acad. Sci. Paris Sér. I Math., 2000, 331(6): 435-440

[9]

Chipot M., Rougirel A.. On the asymptotic behaviour of the solution of parabolic problems in cylindrical domains of large size in some directions. Discrete Contin. Dyn. Syst. Ser. B, 2001, 1(3): 319-338

[10]

Chipot M., Xie Y.. Some issues on the p-Laplace equation in cylindrical domains. Tr. Mat. Inst. Steklova, 2008, 261(1): 287-294

[11]

Dacorogna B.. Direct Methods in the Calculus of Variations, 2000 2 New York: Springer-Verlag

[12]

Evans L. C.. Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal., 1986, 95: 227-252

[13]

Giaquinta M.. Introduction to regularity theory for nonlinear elliptic systems, 1993, Birkhäuser, Basel: Lectures in Mathematics ETH Zürich

[14]

Juditsky A., Nesterov Y.. Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization. Stoch. Syst., 2014, 4(1): 44-80

[15]

Le Dret H., Raoult A.. The nonlinear membrane model as variational limit of nonlinear threedimensional elasticity. J. Maths. Pures Appl., 1995, 74: 549-578

[16]

Mielke A.. Normal hyperbolicity of center manifolds and Saint-Venant’s principle. Arch. Rational Mech. Anal., 1990, 110: 353-372

[17]

Toupin R. A.. Saint-Venant’s principle. Arch. Rational Mech. Anal., 1965, 18: 83-96

[18]

Xie Y.. On Asymptotic Problems in Cylinders and Other Mathematical Issues, 2006, Univ. Zürich: Ph.D. thesis

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/