Quenching phenomenon for a parabolic MEMS equation

Qi Wang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 129 -144.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 129 -144. DOI: 10.1007/s11401-018-1056-6
Article

Quenching phenomenon for a parabolic MEMS equation

Author information +
History +
PDF

Abstract

This paper deals with the electrostatic MEMS-device parabolic equation ${u_t} - \Delta u = \frac{{\lambda f(x)}}{{{{(1 - u)}^p}}}$ in a bounded domain Ω of ℝ N, with Dirichlet boundary condition, an initial condition u 0(x) ∈ [0, 1) and a nonnegative profile f, where λ > 0, p > 1. The study is motivated by a simplified micro-electromechanical system (MEMS for short) device model. In this paper, the author first gives an asymptotic behavior of the quenching time T * for the solution u to the parabolic problem with zero initial data. Secondly, the author investigates when the solution u will quench, with general λ, u 0(x). Finally, a global existence in the MEMS modeling is shown.

Keywords

MEMS equation / Quenching time / Global existence

Cite this article

Download citation ▾
Qi Wang. Quenching phenomenon for a parabolic MEMS equation. Chinese Annals of Mathematics, Series B, 2018, 39(1): 129-144 DOI:10.1007/s11401-018-1056-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosetti A., Prodi G.. A Primer of Nonlinear Analysis, Cambridge University Press, 1995, Massachusetts: Cambridge

[2]

Brauner C. M., Nicolaenko B.. Sur une classe de problemes elliptiques non lineaires. C. R. Acad. Sci. Paris A, 1978, 286: 1007-1010

[3]

Brezis H., Cazenave T., Martel Y., Ramiandrisoa A.. Blow-up for ut-≦u = g(u) revisited. Advances in Differential Equations, 1996, 1: 73-90

[4]

Cantrell R. S., Cosner C.. Spatial Ecology via Reaction-Diffusion Equations, 2003, Chichester: Wiley

[5]

Esposito P., Ghoussoub N.. Uniqueness of solutions for an elliptic equation modeling MEMS. Methods Appl. Anal., 2008, 15(3): 341-354

[6]

Esposito P., Ghoussoub N., Guo Y. J.. Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity. Comm. Pure Appl. Math., 2007, 60(12): 1731-1768

[7]

Esposito, P., Ghoussoub, N. and Guo, Y. J., Mathematical analysis of partial differential equations mod- eling electrostatic MEMS, Courant Lecture Notes in Mathematics, 20, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.

[8]

Flores G., Mercado G. A., Pelesko J. A.. Dynamics and touchdown in electrostatic MEMS, Proceed- ings of ASME DETC’03. IEEE Computer Soc., 2003 1-8

[9]

Ghoussoub N., Guo Y. J.. Estimates for the quenching time of a parabolic equation modeling elec- trostatic MEMS. Methods Appl. Anal., 2008, 15(3): 361-376

[10]

Ghoussoub N., Guo Y. J.. On the partial differential equations of electrostatic MEMS devices: Sta- tionary case. SIAM J. Math. Anal., 2007, 38: 1423-1449

[11]

Ghoussoub N., Guo Y. J.. On the partial differential equations of electrostatic MEMS devices II: Dynamic case. NoDEA Nonlinear Differ. Equ. Appl., 2008, 15: 115-145

[12]

Ghoussoub N., Guo Y. J.. On the partial differential equations of electrostatic MEMS devices III: Refined touchdown behavior. J. Differ. Equ., 2008, 244: 2277-2309

[13]

Guo Y. J., Pan Z. G., Ward M. J.. Touchdown and pull-in voltage behavior of an MEMS device with varying dielectric properties. SIAM J. Appl. Math., 2005, 66(1): 309-338

[14]

Hu B.. Blow-up Theories for Semilinear Parabolic Equations, 2011, Berlin: Springer-Verlag

[15]

Lacey A. A.. Mathematical analysis of thermal runaway for spatially inhomogeneous reactions. SIAM J. Appl. Math., 1983, 43: 1350-1366

[16]

Lin F. H., Yang Y. S.. Nonlinear non-local elliptic equation modelling electrostatic actuation. Proc. R. Soc. A, 2007, 463: 1323-1337

[17]

Mignot F., Puel J. P.. Sur une classe de probleme non lineaires avec non linearite positive, croissante, convexe. Comm. P.D.E., 1980, 5(8): 791-836

[18]

Pelesko J. A., Berstein D. H.. Modeling MEMS and NEMS, 2002, Boca Raton: Chapman & Hall/CRC

[19]

Pelesko J. A.. Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM J. Appl. Math., 2002, 62(3): 888-908

[20]

Sattinger D. H.. Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 1972, 21: 979-1000

[21]

Wang Q.. Estimates for the quenching time of an MEMS equation with fringing field. J. Math. Anal. Appl., 2013, 405: 135-147

[22]

Ye D., Zhou F.. On a general family of nonautonomous elliptic and parabolic equations. Calc. Var., 2010, 37: 259-274

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/