Exponential convergence to time-periodic viscosity solutions in time-periodic Hamilton-Jacobi equations

Kaizhi Wang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 69 -82.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 69 -82. DOI: 10.1007/s11401-018-1052-x
Article

Exponential convergence to time-periodic viscosity solutions in time-periodic Hamilton-Jacobi equations

Author information +
History +
PDF

Abstract

Consider the Cauchy problem of a time-periodic Hamilton-Jacobi equation on a closed manifold, where the Hamiltonian satisfies the condition: The Aubry set of the corresponding Hamiltonian system consists of one hyperbolic 1-periodic orbit. It is proved that the unique viscosity solution of Cauchy problem converges exponentially fast to a 1-periodic viscosity solution of the Hamilton-Jacobi equation as the time tends to infinity.

Keywords

Hamilton-Jacobi equations / Viscosity solutions / Weak KAM theory

Cite this article

Download citation ▾
Kaizhi Wang. Exponential convergence to time-periodic viscosity solutions in time-periodic Hamilton-Jacobi equations. Chinese Annals of Mathematics, Series B, 2018, 39(1): 69-82 DOI:10.1007/s11401-018-1052-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barreira L., Valls C.. Hölder Grobman-Hartman linearization. Discrete Contin. Dyn. Syst., 2007, 18: 187-197

[2]

Bernard P.. Connecting orbits of time dependent Lagrangian systems. Ann. Inst. Fourier (Grenoble), 2002, 52: 1533-1568

[3]

Contreras, G., Iturriaga, R. and S´anchez-Morgado, H., Weak solutions of the Hamilton-Jacobi equation for time periodic Lagrangians, preprint.

[4]

Fathi A.. Théor`eme KAM faible et théorie de Mather sur les syst`emes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 1997, 324: 1043-1046

[5]

Fathi A.. Solutions KAM faibles conjuguées et barri`eres de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 1997, 325: 649-652

[6]

Fathi A.. Orbites hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 1998, 326: 1213-1216

[7]

Fathi A.. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math., 1998, 327: 267-270

[8]

Iturriaga R., S´anchez-Morgado H.. Hyperbolicity and exponential convergence of the Lax-Oleinik semigroup. J. Differential Equations, 2009, 246: 1744-1753

[9]

Lions P.. Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, 1982, London: Pitman Publishing

[10]

Ma˜né R.. On the minimizing measures of Lagrangian dynamical systems. Nonlinearity, 1992, 5: 623-638

[11]

Ma˜né R.. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 1996, 9: 273-310

[12]

Ma˜né R.. Lagrangian flows: The dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat., 1997, 28: 141-153

[13]

Mather J.. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 1991, 207: 169-207

[14]

Mather J.. Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 1993, 43: 1349-1386

[15]

S´anchez-Morgado H.. Hyperbolicity and exponential long-time convergence for space-time periodic Hamilton-Jacobi equations. Proc. Amer. Math. Soc., 2015, 143: 731-740

[16]

Wang K., Yan J.. The rate of convergence of the Lax-Oleinik semigroup-degenerate fixed point case. Sci. China Math., 2011, 54: 545-554

[17]

Wang K., Yan J.. A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems. Commun. Math. Phys., 2012, 309: 663-691

[18]

Wang K., Yan J.. The rate of convergence of the new Lax-Oleinik type operator for time-periodic positive definite Lagrangian systems. Nonlinearity, 2012, 25: 2039-2057

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/