Finite p-groups with few non-major k-maximal subgroups

Boyan Wei , Haipeng Qu , Yanfeng Luo

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 59 -68.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 59 -68. DOI: 10.1007/s11401-018-1051-y
Article

Finite p-groups with few non-major k-maximal subgroups

Author information +
History +
PDF

Abstract

A subgroup of index p k of a finite p-group G is called a k-maximal subgroup of G. Denote by d(G) the number of elements in a minimal generator-system of G and by δ k(G) the number of k-maximal subgroups which do not contain the Frattini subgroup of G. In this paper, the authors classify the finite p-groups with δ d(G)(G) ≤ p 2 and δ d(G)−1(G) = 0, respectively.

Keywords

Finite p-groups / k-Maximal subgroups / k-Major subgroups / Frattini subgroup / The number of non-major k-maximal subgroups

Cite this article

Download citation ▾
Boyan Wei, Haipeng Qu, Yanfeng Luo. Finite p-groups with few non-major k-maximal subgroups. Chinese Annals of Mathematics, Series B, 2018, 39(1): 59-68 DOI:10.1007/s11401-018-1051-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An L. J., Liu Y. D.. Characterization of finite p-group with the number of subgroups. Adv. Math. (China), 2011, 40(3): 285-292

[2]

Berkovich Y.. On the number of subgroups of given order in a finite p-group of expotent p. Proc. Amer. Math. Soc., 1990, 109: 875-879

[3]

Berkovich Y.. Groups of Prime Power Order I, Walter de Gruyter, 2008, New York: Berlin

[4]

Berkovich Y., Janko Z.. Groups of Prime Power Order II, Walter de Gruyter, 2008, New York: Berlin

[5]

Besche H. U., Eick B., O’Brien E. A.. A millennium project: Constructing small groups. International J. of Algebra and Computation, 2002, 12(5): 623-644

[6]

´Cepulić V., Ivanković M., Kovač Striko E.. Second-metacyclic finite 2-groups. Glas. Mat. Ser., 2005, 40(60): 59-69

[7]

Dyubyuk P. E.. On the number of subgroups of certain categories of finite p-groups (in Russian). Mat. Sbornik N. S., 1952, 30(72): 575-580

[8]

Fan Y.. A characterization of elementary abelian p-group by counting subgroups (in Chinese). Math. Pract. Theory, 1988, 1: 63-64

[9]

Hall P.. A contribution to the theory of groups of prime power order. Proc. London Math. Soc., 1933, 36: 29-95

[10]

Hua L. K.. Some “Anzahl” theorems for groups of prime power orders. Sci. Rep. Nat. Tsing-Hua Univ. Ser. A, 1947, 4: 313-327

[11]

Kulakoff A.. über die Anzahl der eigentlichen Untergruppen und der Elemente von gegebener Ordnung in p-Gruppen. Math. Ann., 1931, 104: 778-793

[12]

O’Brien E. A., Vaughan-Lee M.. The groups with order p7 for odd prime p. J. Algebra, 2005, 292: 243-258

[13]

Qu H. P.. Finite non-elementary abelian p-groups whose number of subgroups is maximal. Israel J. Math., 2013, 195(2): 773-781

[14]

Qu H. P., Sun Y., Zhang Q. H.. Finite p-groups in which the number of subgroups of possible order is less than or equal to p3. Chin. Ann. Math. Ser. B, 2010, 31(4): 497-506

[15]

Tuan H. F.. An “Anzahl” theorem of Kulakoff’s type for p-groups. Sci. Rep. Nat. Tsing-Hua Univ. Ser. A, 1948, 5: 182-189

[16]

Zhang Q. H.. A characterization of metacyclic p-groups by counting subgroups, Proc. of International Conference on Algebra 2010, World Sci. Publ., 2012, NJ: Hackensack 713-720

[17]

Zhang Q. H., Qu H. P.. On Hua-Tuan’s conjecture. Sci. China Math., 2009, 52(2): 389-393

[18]

Zhang Q. H., Qu H. P.. On Hua-Tuan’s conjecture II. Sci. China Math., 2011, 54(1): 65-74

[19]

Zhang Q. H., Zhao L. B., Li M. M., Shen Y. Q.. Finite p-groups all of whose subgroups of index p3 are abelian. Commun. Math. Stat., 2015, 3(1): 69-162

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/