PDF
Abstract
The aim of this paper is two-fold. Given a recollement (T′, T, T″, i*, i *, i !, j !, j*, j *), where T′, T, T″ are triangulated categories with small coproducts and T is compactly generated. First, the authors show that the BBD-induction of compactly generated t-structures is compactly generated when i * preserves compact objects. As a con-sequence, given a ladder (T′, T, T″, T, T′) of height 2, then the certain BBD-induction of compactly generated t-structures is compactly generated. The authors apply them to the recollements induced by homological ring epimorphisms. This is the first part of their work. Given a recollement (D(B-Mod),D(A-Mod),D(C-Mod), i*, i *, i !, j !, j*, j *) induced by a homological ring epimorphism, the last aim of this work is to show that if A is Gorenstein, A B has finite projective dimension and j ! restricts to D b(C-mod), then this recollement induces an unbounded ladder (B- G proj,A- G proj, C- G proj) of stable categories of finitely generated Gorenstein-projective modules. Some examples are described.
Keywords
Compactly generated t-structure
/
Recollement
/
BBD-induction
/
BPP-induction
/
Homological ring epimorphism
/
Gorenstein-projective module
Cite this article
Download citation ▾
Nan Gao, Xiaojing Xu.
Homological epimorphisms, compactly generated t-structures and Gorenstein-projective modules.
Chinese Annals of Mathematics, Series B, 2018, 39(1): 47-58 DOI:10.1007/s11401-018-1050-z
| [1] |
Alonso Tarr´io L., Jerem´ias L´opez A., Souto Salorio M. J.. Construction of t-structures and equivalences of derived categories. Trans. Amer. Math. Soc., 2003, 355: 2523-2543
|
| [2] |
Angeleri H¨ugel L., K¨onig S., Liu Q. H.. Recollements and tilting objects. J. Pure Appl. Algebra, 2011, 215: 420-438
|
| [3] |
Angeleri Hügel L., König S., Liu Q. H.. Jordan-Hölder theorems for derived module categories of piecewise hereditary algebras. J. Algebra, 2012, 352: 361-381
|
| [4] |
Angeleri H., gel L., König S., Liu Q. H., Yang D.. Ladders and simplicity of derived module categories, 2015
|
| [5] |
Bass H.. The Morita Theorems, Mimeographed Notes, 1962, Eugene: University of Oregon
|
| [6] |
Beligiannis, A. and Reiten, I., Homological and Homotopical Aspects of Torsion Theories, Mem. Amer. Math. Soc., 188(883), Amer. Math. Soc., Providence, 2007.
|
| [7] |
Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Analysis and Topology on Singular Spaces, Luminy 1981, Astérisque, 100, Soc. Math. France, Paris, 1982.
|
| [8] |
Beilinson A., Ginsburg V., Schechtman V.. Koszul duality. J. Geom. Phys., 1998, 5(3): 317-350
|
| [9] |
Broomhead N., Pauksztello D., Ploog D.. Averaging t-structures and extension closure of aisles. J. Algebra, 2013, 394: 51-78
|
| [10] |
Buchweitz R. O.. Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings. Unpublished manuscript, 1987
|
| [11] |
Chen H. X., Xi C. C.. Good tilting modules and recollements of derived module categories. Proc. Lond. Math. Soc., 2012, 104(5): 959-996
|
| [12] |
Cline E., Parshall B., Scott L.. Stratifying endomorphism algebras. Mem. Amer. Math. Soc., 1996, 124(591): 1993-1999
|
| [13] |
Chen X. W.. Relative singularity categories and Gorenstein-projective modules. Math. Nachr., 2011, 284(2–3): 199-212
|
| [14] |
Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter Co., Berlin, 2000.
|
| [15] |
Gao N., Psaroudakis C.. Gorenstein homological aspects of monomorphism Categories via Morita Rings, 2015
|
| [16] |
Geigle W., Lenzing H.. Perpendicular categories with applications to representation and sheave. J. Algebra, 1991, 144(2): 273-343
|
| [17] |
Green E. L., Psaroudakis C.. On Artin algebras arising from Morita contexts. Algebr. Represent. Theory, 2014, 17(5): 1485-1525
|
| [18] |
Han Y.. Recollement and Hochschild theory. J. Algebra, 2014, 197: 535-547
|
| [19] |
Han Y., Qin Y. Y.. Reducing homological conjectures by n-recollements. Algebr. Represent. Theory, 2016, 19(2): 377-395
|
| [20] |
Hao K. Q., Gao N.. The extension closure of gluing t-structures (in Chinese). Commun. Appl. Math. Comput., 2016, 30(3): 364-368
|
| [21] |
Keller B., Vossieck D.. Aisles in derived categories. Bull. Soc. Math. Belg., 1998, 40: 239-253
|
| [22] |
König S.. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J. Pure Appl. Algebra, 1991, 73(3): 211-232
|
| [23] |
König S., Nagase H.. Hochschild cohomology and stratifying ideals. J. Pure Appl. Algebra, 2009, 213: 886-891
|
| [24] |
König S., Yang D.. Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math., 2014, 19: 403-438
|
| [25] |
Liu Q. H., Vitoria J., Yang D.. Gluing silting objects. Nagoya Math. J., 2014, 216: 117-151
|
| [26] |
Neeman A.. The Grothendieck duality theorem via Bousfields techniques and Brown representability. J. Amer. Math. Soc., 1996, 9(1): 205-236
|
| [27] |
Pan S. Y.. Recollements and Gorenstein algebras. Int. J. Algebra, 2013, 7(17–20): 829-832
|
| [28] |
Xiong B. L., Zhang P.. Gorenstein-projective modules over triangular matrix Artin algebras. J. Algebra Appl., 2012, 11(4): 14
|
| [29] |
Zhang P., Zhang Y. H., Zhou G. D., Zhu L.. Unbounded ladders induced by Gorenstein algebras, 2016
|