Homological epimorphisms, compactly generated t-structures and Gorenstein-projective modules

Nan Gao , Xiaojing Xu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 47 -58.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 47 -58. DOI: 10.1007/s11401-018-1050-z
Article

Homological epimorphisms, compactly generated t-structures and Gorenstein-projective modules

Author information +
History +
PDF

Abstract

The aim of this paper is two-fold. Given a recollement (T′, T, T″, i*, i *, i !, j !, j*, j *), where T′, T, T″ are triangulated categories with small coproducts and T is compactly generated. First, the authors show that the BBD-induction of compactly generated t-structures is compactly generated when i * preserves compact objects. As a con-sequence, given a ladder (T′, T, T″, T, T′) of height 2, then the certain BBD-induction of compactly generated t-structures is compactly generated. The authors apply them to the recollements induced by homological ring epimorphisms. This is the first part of their work. Given a recollement (D(B-Mod),D(A-Mod),D(C-Mod), i*, i *, i !, j !, j*, j *) induced by a homological ring epimorphism, the last aim of this work is to show that if A is Gorenstein, A B has finite projective dimension and j ! restricts to D b(C-mod), then this recollement induces an unbounded ladder (B- G proj,A- G proj, C- G proj) of stable categories of finitely generated Gorenstein-projective modules. Some examples are described.

Keywords

Compactly generated t-structure / Recollement / BBD-induction / BPP-induction / Homological ring epimorphism / Gorenstein-projective module

Cite this article

Download citation ▾
Nan Gao, Xiaojing Xu. Homological epimorphisms, compactly generated t-structures and Gorenstein-projective modules. Chinese Annals of Mathematics, Series B, 2018, 39(1): 47-58 DOI:10.1007/s11401-018-1050-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alonso Tarr´io L., Jerem´ias L´opez A., Souto Salorio M. J.. Construction of t-structures and equivalences of derived categories. Trans. Amer. Math. Soc., 2003, 355: 2523-2543

[2]

Angeleri H¨ugel L., K¨onig S., Liu Q. H.. Recollements and tilting objects. J. Pure Appl. Algebra, 2011, 215: 420-438

[3]

Angeleri Hügel L., König S., Liu Q. H.. Jordan-Hölder theorems for derived module categories of piecewise hereditary algebras. J. Algebra, 2012, 352: 361-381

[4]

Angeleri H., gel L., König S., Liu Q. H., Yang D.. Ladders and simplicity of derived module categories, 2015

[5]

Bass H.. The Morita Theorems, Mimeographed Notes, 1962, Eugene: University of Oregon

[6]

Beligiannis, A. and Reiten, I., Homological and Homotopical Aspects of Torsion Theories, Mem. Amer. Math. Soc., 188(883), Amer. Math. Soc., Providence, 2007.

[7]

Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Analysis and Topology on Singular Spaces, Luminy 1981, Astérisque, 100, Soc. Math. France, Paris, 1982.

[8]

Beilinson A., Ginsburg V., Schechtman V.. Koszul duality. J. Geom. Phys., 1998, 5(3): 317-350

[9]

Broomhead N., Pauksztello D., Ploog D.. Averaging t-structures and extension closure of aisles. J. Algebra, 2013, 394: 51-78

[10]

Buchweitz R. O.. Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings. Unpublished manuscript, 1987

[11]

Chen H. X., Xi C. C.. Good tilting modules and recollements of derived module categories. Proc. Lond. Math. Soc., 2012, 104(5): 959-996

[12]

Cline E., Parshall B., Scott L.. Stratifying endomorphism algebras. Mem. Amer. Math. Soc., 1996, 124(591): 1993-1999

[13]

Chen X. W.. Relative singularity categories and Gorenstein-projective modules. Math. Nachr., 2011, 284(2–3): 199-212

[14]

Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra, de Gruyter Exp. Math., 30, Walter de Gruyter Co., Berlin, 2000.

[15]

Gao N., Psaroudakis C.. Gorenstein homological aspects of monomorphism Categories via Morita Rings, 2015

[16]

Geigle W., Lenzing H.. Perpendicular categories with applications to representation and sheave. J. Algebra, 1991, 144(2): 273-343

[17]

Green E. L., Psaroudakis C.. On Artin algebras arising from Morita contexts. Algebr. Represent. Theory, 2014, 17(5): 1485-1525

[18]

Han Y.. Recollement and Hochschild theory. J. Algebra, 2014, 197: 535-547

[19]

Han Y., Qin Y. Y.. Reducing homological conjectures by n-recollements. Algebr. Represent. Theory, 2016, 19(2): 377-395

[20]

Hao K. Q., Gao N.. The extension closure of gluing t-structures (in Chinese). Commun. Appl. Math. Comput., 2016, 30(3): 364-368

[21]

Keller B., Vossieck D.. Aisles in derived categories. Bull. Soc. Math. Belg., 1998, 40: 239-253

[22]

König S.. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J. Pure Appl. Algebra, 1991, 73(3): 211-232

[23]

König S., Nagase H.. Hochschild cohomology and stratifying ideals. J. Pure Appl. Algebra, 2009, 213: 886-891

[24]

König S., Yang D.. Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math., 2014, 19: 403-438

[25]

Liu Q. H., Vitoria J., Yang D.. Gluing silting objects. Nagoya Math. J., 2014, 216: 117-151

[26]

Neeman A.. The Grothendieck duality theorem via Bousfields techniques and Brown representability. J. Amer. Math. Soc., 1996, 9(1): 205-236

[27]

Pan S. Y.. Recollements and Gorenstein algebras. Int. J. Algebra, 2013, 7(17–20): 829-832

[28]

Xiong B. L., Zhang P.. Gorenstein-projective modules over triangular matrix Artin algebras. J. Algebra Appl., 2012, 11(4): 14

[29]

Zhang P., Zhang Y. H., Zhou G. D., Zhu L.. Unbounded ladders induced by Gorenstein algebras, 2016

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/