On a vector version of a fundamental Lemma of J. L. Lions

Philippe G. Ciarlet , Maria Malin , Cristinel Mardare

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 33 -46.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 33 -46. DOI: 10.1007/s11401-018-1049-5
Article

On a vector version of a fundamental Lemma of J. L. Lions

Author information +
History +
PDF

Abstract

Let Ω be a bounded and connected open subset of ℝ N with a Lipschitz-continuous boundary, the set Ω being locally on the same side of ∂Ω. A vector version of a fundamental lemma of J. L. Lions, due to C. Amrouche, the first author, L. Gratie and S. Kesavan, asserts that any vector field v = (u i) ∈ (D′(Ω)) N, such that all the components $\frac{1}{2}({\partial _j}{v_i} + {\partial _i}{v_j})$, 1 ≤ i, jN, of its symmetrized gradient matrix field are in the space H−1(Ω), is in effect in the space (L2(Ω)) N. The objective of this paper is to show that this vector version of J. L. Lions lemma is equivalent to a certain number of other properties of interest by themselves. These include in particular a vector version of a well-known inequality due to J. Nečas, weak versions of the classical Donati and Saint-Venant compatibility conditions for a matrix field to be the symmetrized gradient matrix field of a vector field, or a natural vector version of a fundamental surjectivity property of the divergence operator.

Keywords

J. L. Lions lemma / Nečas inequality / Donati compatibility conditions / Saint-Venant compatibility conditions

Cite this article

Download citation ▾
Philippe G. Ciarlet, Maria Malin, Cristinel Mardare. On a vector version of a fundamental Lemma of J. L. Lions. Chinese Annals of Mathematics, Series B, 2018, 39(1): 33-46 DOI:10.1007/s11401-018-1049-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R. A.. Sobolev Spaces, 1975, New York: Academic Press

[2]

Amrouche C., Ciarlet P. G., Mardare C.. On a lemma of Jacques-Jouis Lions and its relation to other fundamental results. J. Math. Pures Appl., 2015, 104: 207-226

[3]

Amrouche C., Ciarlet P. G., Gratie L., Kesavan S.. On the characterizations of matrix fields as linearized strain tensor fields. J. Math. Pures Appl., 2006, 86: 116-132

[4]

Amrouche C., Girault V.. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J., 1994, 44: 109-140

[5]

Bogovskii M. E.. Solution of the first boundary value problem for the equation of continuity of an incom- pressible medium. Soviet Math. Dokl., 1979, 20: 1094-1098

[6]

Borchers W., Sohr H.. On the equations rot v = g and divu = f with zero boundary conditions. Hokkaido Math. J., 1990, 19: 67-87

[7]

Bramble J. H.. A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math. Models Methods Appl. Sci., 2003, 13: 361-371

[8]

Ciarlet P. G.. Linear and Nonlinear Functional Analysis with Applications, SIAM, 2013, PA: Philadelphia

[9]

Costabel M., McIntosh A.. On Bogovski?i and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z., 2010, 265: 297-320

[10]

Duvaut G., Lions J. L.. Les Inéquations en Mécanique et en Physique, 1972, Paris: Dunod

[11]

Geymonat G., Gilardi G.. Contre-exemple `a l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, Equations aux Dérivées Partielles et Applications, Articles Dédiés `a Jacques-Louis Lions, pp. 541–548, 1998, Paris: Gauthier-Villars

[12]

Geymonat G., Krasucki F.. Some remarks on the compatibility conditions in elasticity. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 2005, 29: 175-181

[13]

Geymonat G., Krasucki F.. Beltrami’s solutions of general equilibrium equations in continuum me- chanics, C. R. Acad. Sci. Paris. Sér. I, 2006, 342: 259-363

[14]

Geymonat G., Suquet P.. Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci., 1986, 8: 206-222

[15]

Girault V., Raviart P. A.. Finite Element Methods for Navier-Stokes Equations, 1986, Berlin: Springer-Verlag

[16]

Kesavan S.. On Poincaré’s and J. L. Lions’ lemmas, C. R. Acad. Sci. Paris. Sér. I, 2005, 340: 27-30

[17]

Ladyzhenskaya O. A.. The Mathematical Theory of Viscous Flows, Second Edition, 1969, New York: Gordon and Breach

[18]

Ladyzhenskaya O. A., Solonnikov V. A.. Some problems of vector analysis and generalized formulations of boundary value problems for the Navier-Stokes equations. J. Soviet. Math., 1978, 10: 257-286

[19]

Magenes E., Stampacchia G.. I problemi al contorno per le equazioni differenziali di tipo ellittico. Ann. Scuola Norm. Sup. Pisa, 1958, 12: 247-358

[20]

Maz’ya V.. Sobolev Spaces, 1985, Heidelberg: Springer-Verlag

[21]

Nečcas J.. Equations aux Dérivées Partielles. Presses de l’Université de Montréal, 1965

[22]

Nečcas J.. Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris and Academia. Praha, 1967

[23]

Tartar L.. Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay No. 78.13, Université de Paris-Sud, 1978, Orsay: Département de Mathématique

[24]

Temam R.. Navier-Stokes Equations, 1977, Amsterdam: North-Holland

[25]

Vo-Khac K.. Distributions–Analyse de Fourier–Opérateurs aux Dérivées Partielles, Volume 1, 1972, Paris: Vuibert

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/