The iteration formulae of the Maslov-type index theory in weak symplectic Hilbert space

Li Wu , Chaofeng Zhu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 17 -32.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 17 -32. DOI: 10.1007/s11401-018-1048-6
Article

The iteration formulae of the Maslov-type index theory in weak symplectic Hilbert space

Author information +
History +
PDF

Abstract

The authors prove a splitting formula for the Maslov-type indices of symplectic paths induced by the splitting of the nullity in weak symplectic Hilbert space. Then a direct proof of the iteration formulae for the Maslov-type indices of symplectic paths is given.

Keywords

Maslov-type index / Positive path / Iteration formula

Cite this article

Download citation ▾
Li Wu, Chaofeng Zhu. The iteration formulae of the Maslov-type index theory in weak symplectic Hilbert space. Chinese Annals of Mathematics, Series B, 2018, 39(1): 17-32 DOI:10.1007/s11401-018-1048-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Booß-Bavnbek, B. and Zhu, C., Maslov index in symplectic Banach spaces, Mem. Amer. Math. Soc., to appear. arXiv:math/1406.1569v4 [math.SG]

[2]

Booß-Bavnbek B., Zhu C.. The Maslov index in weak symplectic functional analysis. Ann. Global. Anal. Geom., 2013, 44: 283-318

[3]

Bott R.. On the iteration of closed geodesics and the Sturm intersection theory. Comm. Pure Appl. Math., 1956, 9: 171-206

[4]

Duistermaat J. J.. On the Morse index in variational calculus. Advances in Math., 1976, 21(2): 173-195

[5]

Ekeland I.. Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), Vol. 19, 1990, Berlin: Springer-Verlag

[6]

Frauenfelder U., van Koert O.. The H¨ormander index of symmetric periodic orbits. Geom. Dedicata, 2014, 168: 197-205

[7]

Ginzburg V. L.. The Conley conjecture. Ann. of Math. (2), 2010, 172(2): 1127-1180

[8]

Hingston N.. Subharmonic solutions of Hamiltonian equations on tori. Ann. of Math. (2), 2009, 170(2): 529-560

[9]

Hu X., Sun S.. Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit. Comm. Math. Phys., 2009, 290(2): 737-777

[10]

Liu C., Tang S.. Maslov (P, ω) theory for symplectic paths. Adv. Nonlinear Stud., 2015, 15: 963-990

[11]

Liu C., Zhang D.. Iteration theory of L-index and multiplicity of brake orbits. J. Differential Equations, 2014, 257(4): 1194-1245

[12]

Liu C., Zhang D.. Seifert conjecture in the even convex case. Comm. Pure Appl. Math., 2014, 67(10): 1563-1604

[13]

Long Y.. Bott formula of the Maslov-type index theory. Pacific J. Math., 1999, 187(1): 113-149

[14]

Long Y.. Index theory for symplectic paths with applications, Progress in Mathematics, Vol. 207, 2002, Basel: Birkh¨auser

[15]

Long Y., Zhang D., Zhu C.. Multiple brake orbits in bounded convex symmetric domains. Adv. Math., 2006, 203(2): 568-635

[16]

Long Y., Zhu C.. Closed characteristics on compact convex hypersurfaces in R2n. Ann. of Math (2), 2002, 155(2): 317-368

[17]

Salamon D., Zehnder E.. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math., 1992, 45(10): 1303-1360

[18]

Whitehead, G. W., Elements of Homotopy Theory, Graduate Texts in Mathematics, 61, Springer-Verlag, New York, Berlin, 1978.

[19]

Zhu C.. A generalized Morse index theorem, Analysis, Geometry and Topology of Elliptic Operators, World Sci. Publ., 2006, NJ: Hackensack 493-540

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/