A boundary Schwarz lemma for holomorphic mappings on the polydisc

Yang Liu , Zhihua Chen , Yifei Pan

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 9 -16.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (1) : 9 -16. DOI: 10.1007/s11401-018-1047-7
Article

A boundary Schwarz lemma for holomorphic mappings on the polydisc

Author information +
History +
PDF

Abstract

The authors prove a general Schwarz lemma at the boundary for holomorphic mappings from the polydisc to the unit ball in any dimensions. For the special case of one complex variable, the obtained results give the classic boundary Schwarz lemma.

Keywords

Boundary Schwarz lemma / Holomorphic mapping / Polydisc / Unit ball

Cite this article

Download citation ▾
Yang Liu, Zhihua Chen, Yifei Pan. A boundary Schwarz lemma for holomorphic mappings on the polydisc. Chinese Annals of Mathematics, Series B, 2018, 39(1): 9-16 DOI:10.1007/s11401-018-1047-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ruscheweyh S.. Two remarks on bounded analytic functions. Serdica, 1985, 11(2): 200-202

[2]

Dai S., Pan Y.. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proceedings of the American Mathematical Society, 2008, 136(2): 635-640

[3]

Rudin W.. Function Theory in Polydiscs, 1969, New York: W. A. Benjamin

[4]

Knese G.. A Schwarz lemma on the polydisk. Proceedings of the American Mathematical Society, 2007, 135(9): 2759-2768

[5]

Liu Y., Chen Z.. Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball. Journal of Mathematical Analysis and Applications, 2011, 376(1): 123-128

[6]

Garnett J.. Bounded Analytic Functions, 1981, New York: Academic Press

[7]

Krantz S.. The Schwarz lemma at the boundary. Complex Variables and Elliptic Equations, 2011, 56(5): 455-468

[8]

Liu T., Wang J., Tang X.. Schwarz lemma at the boundary of the unit ball in Cn and its applications. Journal of Geometry Analysis, 2015, 25(3): 1890-1914

[9]

Tang X., Liu T., Lu J.. Schwarz lemma at the boundary of the unit polydisk in Cn. Science China Mathematics, 2015, 58(8): 1639-1652

[10]

Liu Y., Dai S., Pan Y.. Boundary Schwarz lemma for pluriharmonic mappings between unit balls. Journal of Mathematical Analysis and Applications, 2016, 433(1): 487-495

[11]

Chen, Z., Liu, Y. and Pan Y., A Schwarz lemma at the boundary of Hilbert balls, Chin. Ann. Math. Ser. B, to appear.

[12]

Alexander H.. Holomorphic mappings from the ball and polydisc. Mathematische Annalen, 1974, 209(3): 249-256

[13]

Alexander H.. Extremal holomorphic imbeddings between the ball and polydisc. Proceedings of the American Mathematical Society, 1978, 68(2): 200-202

[14]

Jarnicki, M. and Pflug, P., Invariant distances and metrics in complex analysis, Walter de Gruyter, 9, Berlin, 1993.

[15]

Rudin W.. Function Theory in the Unit Ball of Cn, 2009, New York: Springer-Verlag

[16]

Kobayashi S.. Intrinsic metrics on complex manifolds. Bulletin of the American Mathematical Society, 1967, 73(3): 347-349

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/