A Schwarz Lemma for Harmonic Mappings Between the Unit Balls in Real Euclidean Spaces

Shaoyu Dai , Yifei Pan

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1065 -1092.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1065 -1092. DOI: 10.1007/s11401-018-0114-4
Article

A Schwarz Lemma for Harmonic Mappings Between the Unit Balls in Real Euclidean Spaces

Author information +
History +
PDF

Abstract

The authors prove a Schwarz lemma for harmonic mappings between the unit balls in real Euclidean spaces. Roughly speaking, this result says that under a harmonic mapping between the unit balls in real Euclidean spaces, the image of a smaller ball centered at origin can be controlled. This extends the related result proved by Chen in complex plane.

Keywords

Harmonic mappings / Schwarz lemma / Unit balls

Cite this article

Download citation ▾
Shaoyu Dai, Yifei Pan. A Schwarz Lemma for Harmonic Mappings Between the Unit Balls in Real Euclidean Spaces. Chinese Annals of Mathematics, Series B, 2018, 39(6): 1065-1092 DOI:10.1007/s11401-018-0114-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L. V.. Conformal Invariants: Topics in Geometric Function Theory, 1973, New York: McGraw-Hill

[2]

Axler S., Bourdon P., Wade R.. Harmonic Function Theory, 2001, New York: Springer-Verlag

[3]

Chen H. H.. The Schwarz-Pick lemma for planar harmonic mappings. Science China Mathematics, 2011, 54(6): 1101-1118

[4]

Dai S. Y., Pan Y. F.. A note on Schwarz-Pick lemma for bounded complex-valued harmonic functions in the unit ball of Rn. Chin. Ann. Math. Ser. B, 2015, 36(1): 67-80

[5]

Heinz E.. On one-to-one harmonic mappings. Pacific J. Math., 1959, 9: 101-105

[6]

Pick G.. Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche. Math. Ann., 1915, 77: 1-6

[7]

Pick G.. Über die beschränkungen analytischer Funktionen, welche durch vorgeschriebene Werte bewirkt werden. Math. Ann., 1915, 77: 7-23

[8]

Rudin W.. Function Theory in the Unit Ball of Cn, 1980, New York: Spring-Verlag

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/