Ribbon Hopf Superalgebras and Drinfel’d Double

Jialei Chen , Shilin Yang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1047 -1064.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1047 -1064. DOI: 10.1007/s11401-018-0113-5
Article

Ribbon Hopf Superalgebras and Drinfel’d Double

Author information +
History +
PDF

Abstract

Finite dimensional ribbon Hopf (super) algebras play an important role in constructing invariants of 3-manifolds. In the present paper, the authors give a necessary and sufficient condition for the Drinfel’d double of a finite dimensional Hopf superalgebra to have a ribbon element. The criterion can be seen as a generalization of Kauffman and Radford’s result in the non-super situation to the ℤ2-graded situation, however, the derivation of the result in the ℤ2-graded case will be much more complicated.

Keywords

Hopf superalgebras / Drinfel’d double / Ribbon element

Cite this article

Download citation ▾
Jialei Chen, Shilin Yang. Ribbon Hopf Superalgebras and Drinfel’d Double. Chinese Annals of Mathematics, Series B, 2018, 39(6): 1047-1064 DOI:10.1007/s11401-018-0113-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Q., Wang D.. Constructing quasitriangular Hopf algebras. Comm. Alg., 2015, 43(4): 1698-1722

[2]

Wang D., Zhang J. J., Zhuang G. B.. Primitive cohomology of Hopf algebras. J. Algebra, 2016, 464: 36-96

[3]

Gould M. D., Zhang R. B., Bracken A. J.. Quantum double construction for graded Hopf algebras. Bull. Austral. Math. Soc., 1993, 47(3): 353-375

[4]

Reshetikhin N., Turaev V. G.. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 1991, 103(1): 547-597

[5]

Kauffman L. H., Radford D. E.. A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra. J. Algebra, 1993, 159(1): 98-114

[6]

Benkart G., Witherspoon S.. Restricted two-parameter quantum groups. Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, Fields Inst. Commun., 2004, 40: 293-318

[7]

Hu N., Wang X.. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type B. J. Geom. and Phys., 2010, 60: 430-453

[8]

Hu N., Wang X.. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G 2. Pacific J. Math., 2009, 241(2): 243-273

[9]

Dong H., Huang H.. Hopf Superquivers. Chin. Ann. Math. Ser. B., 2011, 32(2): 253-264

[10]

Blumen S.. Quantum superalgebra at roots of unity and topological invariants of three-manifolds, 2005, Australia: Univ of Sydney

[11]

Fischman D., Montgomery S., Schneider H.-J.. Frobenius extensions of subalgebras of Hopf algebras. Trans. Amer. Math. Soc., 1997, 349(12): 4857-4895

[12]

Radford D. E.. Minimal quasitriangular Hopf algebras. J. Algebra, 1993, 157(2): 285-315

[13]

Hennings M.. Invariants of links and 3-manifolds obtained from Hopf algebras. J. London Math. Soc., 1996, 54: 594-624

[14]

Liu K.. A family of new universal R-matrix. Proc. Amer. Math. Soc., 1997, 125(4): 987-999

[15]

Panaite F.. Ribbon and charmed elements for quasitriangular Hopf algebras. Comm. Alg., 1997, 25(3): 973-977

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/