On the Waring-Goldbach Problem for Six Cubes and Two Biquadrates

Sanying Shi , Li Liu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1033 -1046.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1033 -1046. DOI: 10.1007/s11401-018-0112-6
Article

On the Waring-Goldbach Problem for Six Cubes and Two Biquadrates

Author information +
History +
PDF

Abstract

Let P r denote an almost prime with at most r prime factors, counted according to multiplicity. In the present paper, it is proved that for any sufficiently large even integer n, the equation $n = {x^3} + p_1^3 + p_2^3 + p_3^3 + p_4^3 + p_5^3 + p_6^4 + p_7^4$ has solutions in primes p i with x being a P 6. This result constitutes a refinement upon that of Hooley C.

Keywords

Waring-Goldbach problem / Hardy-Littlewood method / Sieve theory

Cite this article

Download citation ▾
Sanying Shi, Li Liu. On the Waring-Goldbach Problem for Six Cubes and Two Biquadrates. Chinese Annals of Mathematics, Series B, 2018, 39(6): 1033-1046 DOI:10.1007/s11401-018-0112-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brüdern J.. On waring’s problem for cubes and biquadrates. J. London Math. Soc., 1988, 37(2): 25-42

[2]

Brüdern, J., Sieves, the circle mothod and Waring’s problem for cubes, Mathematica Gottingenis, 51, 1991.

[3]

Brüdern J.. A sieve approach to the Waring-Goldbach problem I. Ann. Sci. Ec. Norm. Sup., 1995, 28(4): 461-476

[4]

Cai Y. C.. The Waring-Goldbach problem: One square and five cubes. Ramanujan J., 2014, 34: 57-72

[5]

Cai Y. C., Mu Q. W.. Waring-Goldbach problem: Two squares and some unlike powers. Acta Math. Hungar., 2015, 145(1): 46-67

[6]

Halberstam H., Richert H. E.. Sieve Methods, 1974, London: Academic Press

[7]

Hua L. K.. Additive Theory of Prime Numbers. Amer. Math. Soc., 1965

[8]

Hooley C.. On Waring’s problem. Acta Math., 1986, 157: 49-97

[9]

Iwaniec H.. A new form of the error term in the linear sieve. Acta Arith., 1980, 37: 307-320

[10]

Vaughan R. C.. Sums of three cubes. Bull. London Math. Soc., 1985, 17: 17-20

[11]

Vaughan R. C.. The Hardy-Littlewood Method, 1997, Cambridge: Camb. Univ. Press

[12]

Titchmarsh, E. C., The theory of the Riemann Zeta-Function, 2nd edition (Revised by D. R. Heath-Brown), Oxford University Press, Oxford, 1986.

[13]

Vinogradov I. M.. Elements of Number Theory, 1954, New York: Dover. Publ.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/