Restriction Theorems on Métiver Groups Associated to Joint Functional Calculus

Heping Liu , An Zhang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1017 -1032.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1017 -1032. DOI: 10.1007/s11401-018-0111-7
Article

Restriction Theorems on Métiver Groups Associated to Joint Functional Calculus

Author information +
History +
PDF

Abstract

The authors get on Métivier groups the spectral resolution of a class of operators [inline-graphic not available: see fulltext], the joint functional calculus of the sub-Laplacian and Laplacian on the centre, and then give some restriction theorems together with their asymptotic estimates, asserting the mix-norm boundedness of the spectral projection operators $\mathcal{P}_\mu^m$ for two classes of functions m(a, b) = (a α + b β)γ or (1 + a α + b β)γ, with α, β > 0, γ ≠ 0.

Keywords

Restriction operator / Métivier group / Functional calculus

Cite this article

Download citation ▾
Heping Liu, An Zhang. Restriction Theorems on Métiver Groups Associated to Joint Functional Calculus. Chinese Annals of Mathematics, Series B, 2018, 39(6): 1017-1032 DOI:10.1007/s11401-018-0111-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett J., Carbery A., Tao T.. On the multilinear restriction and Kakeya conjectures. Acta Math., 2006, 196(2): 261-302

[2]

Bourgain J., Guth L.. Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal., 2011, 21(6): 1239-1295

[3]

Casarino V., Ciatti P.. Restriction estimates for the full Laplacian on Métivier groups. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2013, 24(2): 165-179

[4]

Casarino V., Ciatti P.. A restriction theorem for Métivier groups. Adv. Math., 2013, 245: 52-77

[5]

Kaplan A.. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc., 1980, 258(1): 147-153

[6]

Kaplan A., Ricci F.. Harmonic analysis on groups of Heisenberg type. Harmonic Analysis (Cortona, 1982), 1983, 992: 416-435

[7]

Koch H., Ricci F.. Spectral projections for the twisted Laplacian. Studia Math., 2007, 180(2): 103-110

[8]

Liu H., Song M.. A functional calculus and restriction theorem on H-type groups. Pacific J. Math., 2017, 286(2): 291-305

[9]

Liu H., Wang Y.. A restriction theorem for the H-type groups. Proc. Amer. Math. Soc., 2011, 139(8): 2713-2720

[10]

Métivier G.. Hypoellipticité analytique sur des groupes nilpotents de rang 2. Duke Math. J., 1980, 47(1): 195-221

[11]

Müller D.. A restriction theorem for the Heisenberg group. Ann. of Math. (2), 1990, 131(3): 567-587

[12]

Müller D., Seeger A.. Singular spherical maximal operators on a class of two step nilpotent Lie groups. Israel J. Math., 2004, 141: 315-340

[13]

Strichartz R. S.. Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal., 1989, 87(1): 51-148

[14]

Thangavelu S.. Restriction theorems for the Heisenberg group. J. Reine Angew. Math., 1991, 414: 51-65

[15]

Thangavelu, S., Harmonic analysis on the Heisenberg group, Progress in Mathematics, 159, Birkhäuser, Boston, 1998.

[16]

Tomas P. A.. A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc., 1975, 81: 477-478

[17]

Wolff T.. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana, 1995, 11(3): 651-674

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/