Some Weighted Norm Inequalities on Manifolds

Shiliang Zhao

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1001 -1016.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 1001 -1016. DOI: 10.1007/s11401-018-0110-8
Article

Some Weighted Norm Inequalities on Manifolds

Author information +
History +
PDF

Abstract

Let M be a complete non-compact Riemannian manifold satisfying the volume doubling property and the Gaussian upper bounds. Denote by Δ the Laplace-Beltrami operator and by ∇ the Riemannian gradient. In this paper, the author proves the weighted reverse inequality $\left\| {{\Delta ^{\frac{1}{2}}}f} \right\|_{L^p(w)}\leq C\left\| {|\nabla f|} \right\|_{L^p(w)}$, for some range of p determined by M and w. Moreover, a weak type estimate is proved when p = 1. Some weighted vector-valued inequalities are also established.

Keywords

Weighted norm inequality / Poincaré inequality / Riesz transform

Cite this article

Download citation ▾
Shiliang Zhao. Some Weighted Norm Inequalities on Manifolds. Chinese Annals of Mathematics, Series B, 2018, 39(6): 1001-1016 DOI:10.1007/s11401-018-0110-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auscher P., Coulhon T.. Riesz transform on manifolds and Poincaré inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2005, 4(3): 531-555

[2]

Auscher P., Coulhon T., Duong X. T., Hofmann S.. Riesz transform on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup., 2004, 37(6): 911-957

[3]

Auscher P., Martell J. M.. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part I: General operator theory and weights. Adv. Math., 2007, 212(1): 225-276

[4]

Auscher P., Martell J. M.. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part II: Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ., 2007, 7(2): 265-316

[5]

Auscher P., Martell J. M.. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part III: Harmonic analysis of elliptic operators. J. Funct. Anal., 2006, 241(2): 703-746

[6]

Auscher P., Martell J. M.. Weighted norm inequalities, off-diagonal estimates and elliptic operators, Part IV: Riesz transforms on manifolds and weights. Math. Z., 2008, 260(3): 527-539

[7]

Auscher P., Ben Ali B.. Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials. Ann. Inst. Fourier, 2007, 57(6): 1975-2014

[8]

Badr N., Ben Ali B.. L p boundedness of Riesz tranform related to Schrödinger operators on a manifold. Scuola Norm. Sup. di Pisa (5), 2009, 8(4): 725-765

[9]

Badr N., Martell J.M.. Weighted norm inequalities on graphs. J. Geom. Anal., 2012, 22(4): 1173-1210

[10]

Coulhon T., Duong X. T.. Riesz transform and related inequalities on non-compact Riemannian manifolds. Comm. Pure Appl. Math., 2003, 56(12): 1728-1751

[11]

Coulhon T., Duong X. T.. Riesz transforms for 1 ≤ p ≤ 2. Trans. Amer. Math. Soc., 1999, 351(3): 1151-1169

[12]

Franchi B., Pérez C., Wheeden R. L.. Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type. J. Funct. Anal., 1998, 153(1): 108-146

[13]

Grafakos, L., Classical Fourier Analysis, Grad. Texts in Math., 2nd edition, Vol. 249, Springer-Verlag, New York, 2008.

[14]

Grigor’yan A.. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Diff. Geom., 1997, 45(1): 33-52

[15]

Grigor’yan A.. Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold. J. Funct. Anal, 1995, 127(2): 363-389

[16]

Grigor’yan, A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, Vol. 47, A.M.S., Providence, RI, 2009.

[17]

Heinonen J., Kilpeläinen T., Olli M.. Nonlinear Potential Theory of Degenerate Elliptic Equations, 2012, New York: Courier Dover

[18]

Jiang R., Li H., Zhang H.. Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601-627

[19]

Li H.-Q.. La transformation de Riesz sur les variétés coniques. J. Funct. Anal., 1999, 168(1): 145-238

[20]

Stein E. M.. Harmonic Analysis: Real Variable Methods. Orthogonality and Oscillatory Integrals, 1993, Princeton: Princeton University Press

[21]

Stein, E. M., Topics in Harmonic Analysis, Related to the Littlewood-Paley Theory, No. 63, Princeton University Press, Princeton, 1970.

[22]

Strichartz R.. Analysis of the Laplacian on a complete Riemannian manifold. J. Funct. Anal., 1983, 52(1): 48-79

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/