Strongly Gauduchon Spaces

Wei Xia , Lingxu Meng

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 989 -1000.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 989 -1000. DOI: 10.1007/s11401-018-0109-1
Article

Strongly Gauduchon Spaces

Author information +
History +
PDF

Abstract

The authors define strongly Gauduchon spaces and the class [inline-graphic not available: see fulltext], which are generalization of strongly Gauduchon manifolds in complex spaces. Comparing with the case of Kählerian, the strongly Gauduchon space and the class [inline-graphic not available: see fulltext] are similar to the Kähler space and the Fujiki class [inline-graphic not available: see fulltext] respectively. Some properties about these complex spaces are obtained. Moreover, the relations between the strongly Gauduchon spaces and the class [inline-graphic not available: see fulltext] are studied.

Keywords

Strongly Gauduchon metric / Strongly Gauduchon space / Class [inline-graphic not available: see fulltext] / Topologically essential map

Cite this article

Download citation ▾
Wei Xia, Lingxu Meng. Strongly Gauduchon Spaces. Chinese Annals of Mathematics, Series B, 2018, 39(6): 989-1000 DOI:10.1007/s11401-018-0109-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alessandrini L.. Holomorphic submersions onto Kähler or balanced manifolds. Tohoku Math. J. (2), 2014, 68(4): 607-619

[2]

Alessandrini L., Andreatta M.. Closed transverse (p, p)-forms on compact complex manifolds. Compositio Math., 1987, 61: 181-200

[3]

Alessandrini L., Bassanelli G.. Positive ϑϑ-closed currents and non-Kähler geometry. J. Geom. Anal., 1992, 2: 291-316

[4]

Deligne, P., Équations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin, New York, 1970.

[5]

Deligne P., Griffiths P., Morgan J. Real homotopy theory of Kähler manifolds. Invent. Math., 1975, 29(3): 245-274

[6]

Fischer, G., Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

[7]

Fu J., Meng L., Xia W.. Complex balanced spaces. Internat. J. Math., 2015, 26(12): 1550105

[8]

Fujiki A.. Closedness of the Douady spaces of compact Kähler spaces. Publ. RIMS, Kyoto Univ., 1978, 14: 1-52

[9]

Grauert, H. and Remmert, R., Coherent Analytic Sheaves, Grundlehren der Math. Wiss., 265, Springer-Verlag, Berlin, 1984.

[10]

Ho C.-W.. A note on proper maps. Proc. Amer. Math. Soc., 1975, 51: 237-241

[11]

King J.. The currents defined by analytic varieties. Acta Math., 1971, 127: 185-220

[12]

Michelsohn M. L.. On the existence of special metrics in complex geometry. Acta Math., 1982, 149: 261-295

[13]

Popovici, D., Limits of projective manifolds under holomorphic deformations. arXiv: 0910.2032v1

[14]

Popovici D.. Stability of strongly Gauduchon manifolds under modifications. J. Geom. Anal., 2013, 23: 653-659

[15]

Popovici D.. Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics. Invent. Math., 2013, 194: 515-534

[16]

Varouchas J.. Stabilité de la classe des variétés Kählériennes par certains morphismes propres. Invent. Math., 1984, 77: 117-127

[17]

Varouchas J.. Kähler spaces and proper open morphisms. Math. Ann., 1989, 283: 13-52

[18]

Xiao J.. On strongly Gauduchon metrics of compact complex manifolds. J. Geom. Anal., 2015, 25: 2011-2027

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/