Variation Inequalities Related to Schrödinger Operators on Morrey Spaces

Jing Zhang , Huoxiong Wu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 973 -988.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 973 -988. DOI: 10.1007/s11401-018-0108-2
Article

Variation Inequalities Related to Schrödinger Operators on Morrey Spaces

Author information +
History +
PDF

Abstract

The authors establish the boundedness of the variation operators associated with the heat semigroup, Riesz transforms and commutators generated by the Riesz transforms and BMO-type functions in the Schrödinger setting on the Morrey spaces.

Keywords

Schrödinger operators / Variation operators / Heat semigroups / Riesz transforms / Commutators / Morrey spaces

Cite this article

Download citation ▾
Jing Zhang, Huoxiong Wu. Variation Inequalities Related to Schrödinger Operators on Morrey Spaces. Chinese Annals of Mathematics, Series B, 2018, 39(6): 973-988 DOI:10.1007/s11401-018-0108-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams D. R.. A note on Riesz potentials. Duke Math. J., 1975, 42: 765-778

[2]

Akcoglu M., Jones R. L., Schwartz P.. Variation in probability, ergodic theory and analysis. Illinois J. Math., 1998, 42(1): 154-177

[3]

Betancor J. J., Farińa J. C., Harboure E., Rodríguez-Mesa L.. L p-boundedness properties of variation operators in the Schrödinger setting. Rev. Mat. Complut., 2013, 26: 485-534

[4]

Bongioanni B., Harboure E., Salinas O.. Commutators of Riesz transform related to Schrödinger operators. J. Fourier Anal. Appl., 2011, 17(1): 115-134

[5]

Bougain J.. Pointwise ergodic theorem for arithmatic sets. Inst. Hautes Études Sci. Publ. Math., 1989, 69: 5-45

[6]

Caffarelli L.. Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 1988, 58: 253-284

[7]

Campbell J. T., Jones R. L., Reinhold K., Wierdl M.. Oscillation and variation for Hilbert transform. Duke Math. J., 2000, 105: 59-83

[8]

Campbell J. T., Jones R. L., Reinhold K., Wierdl M.. Oscillation and variation for singular integrals in higher dimension. Trans. Amer. Math. Soc., 2003, 355: 2115-2137

[9]

Chiarenza F., Frasca M., Longo P.. Interior W 2,p-estimates for nondivergence elliptic equations with discontinuous coefficients. Ric. Mat., 1992, 40: 149-168

[10]

Crescimbeni R., Macías R. A., Menárguez T. The ρ-variation as an operator between maximal operators and singular integrals. J. Evol. Equ., 2009, 9(1): 81-102

[11]

Crescimbeni R., Martin-Reyes F. J., Torre A. L., Torrea J. L.. The ρ-variation of the Hermitian Riesz transform. Acta Math. Sin. (Engl. Ser.), 2010, 26: 1827-1838

[12]

Di Fazio G., Palagachev D., Ragusa M.. Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal., 1999, 166(2): 179-196

[13]

Di Fazio G., Ragusa M.. Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal., 1993, 112(2): 241-256

[14]

Dziubański J., Garrigos G., Martinez T. BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z., 2005, 249(2): 329-356

[15]

Gehring F. W.. The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math., 1973, 130: 265-277

[16]

Gillespie T. A., Torrea J. L.. Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math., 2004, 141: 125-144

[17]

Huang Q.. Estimates on the generalized Morrey spaces L φ 2,λ and BMOψ for linear elliptic systems. Indiana Univ. Math. J., 1996, 45(2): 397-439

[18]

Jones R. L.. Ergodic theory and connections with analysis and probability. New York J. Math., 1997, 3A: 31-67

[19]

Jones R. L.. Variation inequalities for singular integrals and related operators. Contemp. Math., 2006, 411: 89-121

[20]

Jones R. L., Reinhold K.. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam. Systems, 2001, 21: 1809-1829

[21]

Kato T.. Strong solutions of the Navier-Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat., 1992, 22(2): 127-155

[22]

Mazzucato A.. Besov-Morrey spaces: functions space theory and applications to non-linear PDE. Trans. Amer. Math. Soc., 2003, 355(4): 1297-1364

[23]

Morrey C. B.. On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 1938, 43: 126-166

[24]

Palagachev D., Softova L.. Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal., 2004, 20(3): 237-263

[25]

Pan G., Tang L.. Boundedness for some Schrödinger type operators on weighted Morrey spaces. J. Funct. Spaces, 2014, 355: 101-109

[26]

Pérez C.. Two weighted norm inequalities for Riesz potentials and uniform L p-weighted Sobolev inequalities. Indiana Univ. Math. J., 1990, 39(1): 31-44

[27]

Ruiz A., Vega L.. Unique continuation for Schrödinger operators with potential in Morrey spaces. Publ. Mat., 1991, 35(1): 291-298

[28]

Shen Z.. On the Neumann problem for Schrödinger operators in Lipschitz domains. Indiana Univ. Math. J., 1994, 43(1): 143-176

[29]

Shen Z.. L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble), 1995, 45(2): 513-546

[30]

Shen Z.. The periodic Schrödinger operators with potentials in the Morrey class. J. Funct. Anal., 2002, 193(2): 314-345

[31]

Shen Z.. Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Amer. Math. J., 2003, 125(5): 1079-1115

[32]

Tang L., Dong J.. Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J. Math. Anal. Appl., 2009, 355: 101-109

[33]

Taylor M.. Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Comm. Partial Differential Equations, 1992, 17: 287-308

[34]

Zhong J.. Harmonic analysis for some Schrödinger type operators, 1993, Princeton: Princeton University

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/