Besov Functions and Tangent Space to the Integrable Teichmüller Space

Shu’an Tang , Xiaogao Feng , Yuliang Shen

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 963 -972.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 963 -972. DOI: 10.1007/s11401-018-0107-3
Article

Besov Functions and Tangent Space to the Integrable Teichmüller Space

Author information +
History +
PDF

Abstract

The authors identify the function space which is the tangent space to the integrable Teichmüller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations of this function space are obtained.

Keywords

Universal Teichmüller space / Integrable Teichmüller space / Zygmund function / Quasiconformal deformation / Besov function

Cite this article

Download citation ▾
Shu’an Tang, Xiaogao Feng, Yuliang Shen. Besov Functions and Tangent Space to the Integrable Teichmüller Space. Chinese Annals of Mathematics, Series B, 2018, 39(6): 963-972 DOI:10.1007/s11401-018-0107-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L. V.. Remarks on Teichmüller’s space of Riemann surfaces. Ann. Math., 1961, 74: 171-191

[2]

Ahlfors L. V.. Lectures on Quasiconformal Mapping, 1966, Princeton, New York: D. Van Nostrand

[3]

Ahlfors L. V.. Quasiconformal deformations and mappings in Rn. J. Anal. Math., 1976, 30: 74-97

[4]

Beurling A., Ahlfors L. V.. The boundary correspondence under quasiconformal mappings. Acta Math., 1956, 96: 125-142

[5]

Cui G.. Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. Sci. China Ser. A, 2000, 43: 267-279

[6]

Duren L.. Theory of H p Spaces, 1970, New York, London: Academic Press

[7]

Gardiner, F. P. and Lakic, N., Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000.

[8]

Gardiner F. P., Sullivan D.. Symmetric structure on a closed curve. Amer. J. Math., 1992, 114: 683-736

[9]

Garnett J. B.. Bounded Analytic Functions, 1981, New York: Academic Press

[10]

Guo H.. Integrable Teichmüller spaces. Sci. China Ser. A, 2000, 43: 47-58

[11]

Hu Y., Song J., Wei H., Shen Y.. An integral operator induced by a Zygmund function. J. Math. Anal. Appl., 2013, 401: 560-567

[12]

Lehto O.. Univalent Functions and Teichmüller Spaces, 1986, New York: John Wiley & Sons Inc., Springer-Verlag

[13]

Nag S.. The Complex Analytic Theory of Teichmüller Spaces, 1988

[14]

Nag S., Verjovsky A.. Diff(S 1) and the Teichmüller spaces. Comm. Math. Phys., 1990, 130: 123-138

[15]

Reich E., Chen J.. Extensions with bounded ϑ-derivative. Ann. Acad. Sci. Fenn., 1991, 16: 377-389

[16]

Reimann H.. Ordinary differential equations and quasiconformal mappings. Invent. Math., 1976, 33: 247-270

[17]

Shamoyan F. A.. Toeplitz operators and division by an inner function in some spaces of analytic functions. Dokl. Akad. Nauk Armenii, 1983, 76: 215-219

[18]

Shen Y.. Fourier coefficients of Zygmund functions and analytic functions with quasiconformal deformation extensions. Sci. China Math., 2012, 55: 607-624

[19]

Shen, Y., Weil-Peterssen Teichmüller space, Amer. J. Math., arXiv: 1304.3197.

[20]

Takhtajan L., Teo L.. Weil-Petersson metric on the universal Teichmüller space. Mem. Amer. Math. Soc., 2006, 183(861): 119

[21]

Tang S.. Some characterizations of the integrable Teichmüller space. Sci. China Math., 2013, 56: 541-551

[22]

Tang, S. and Shen, Y., Integrable Teichmüller space, preprint.

[23]

Triebel, H., Theory of Function Spaces, Monographs in Mathematics, 78, Birkhäuser, Basel, 1983.

[24]

Wei H., Shen Y.. On the tangent space to the BMO-Teichmüller space. J. Math. Anal. Appl., 2014, 419: 715-726

[25]

Yanagishita M.. Introduction of a complex structure on the p-integrable Teichmüller space. Ann. Acad. Sci. Fenn. Math., 2014, 39: 947-971

[26]

Zhu, K., Operator Theory in Function Spaces, Math. Surveys Monogr., 138, American Mathematical Society, Providence, RI, 2007.

[27]

Zygmund A.. Smooth functions. Duke Math. J., 1945, 12: 47-76

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/