Besov Functions and Tangent Space to the Integrable Teichmüller Space
Shu’an Tang , Xiaogao Feng , Yuliang Shen
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (6) : 963 -972.
Besov Functions and Tangent Space to the Integrable Teichmüller Space
The authors identify the function space which is the tangent space to the integrable Teichmüller space. By means of quasiconformal deformation and an operator induced by a Zygmund function, several characterizations of this function space are obtained.
Universal Teichmüller space / Integrable Teichmüller space / Zygmund function / Quasiconformal deformation / Besov function
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Gardiner, F. P. and Lakic, N., Quasiconformal Teichmüller Theory, Mathematical Surveys and Monographs, 76, American Mathematical Society, Providence, RI, 2000. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Shen, Y., Weil-Peterssen Teichmüller space, Amer. J. Math., arXiv: 1304.3197. |
| [20] |
|
| [21] |
|
| [22] |
Tang, S. and Shen, Y., Integrable Teichmüller space, preprint. |
| [23] |
Triebel, H., Theory of Function Spaces, Monographs in Mathematics, 78, Birkhäuser, Basel, 1983. |
| [24] |
|
| [25] |
|
| [26] |
Zhu, K., Operator Theory in Function Spaces, Math. Surveys Monogr., 138, American Mathematical Society, Providence, RI, 2007. |
| [27] |
|
/
| 〈 |
|
〉 |