Measure Estimates of Nodal Sets of Polyharmonic Functions

Long Tian

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 917 -932.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 917 -932. DOI: 10.1007/s11401-018-0104-6
Article

Measure Estimates of Nodal Sets of Polyharmonic Functions

Author information +
History +
PDF

Abstract

This paper deals with the function u which satisfies △ k u = 0, where k ≥ 2 is an integer. Such a function u is called a polyharmonic function. The author gives an upper bound of the measure of the nodal set of u, and shows some growth property of u.

Keywords

Polyharmonic function / Nodal set / Frequency / Measure estimate / Growth property

Cite this article

Download citation ▾
Long Tian. Measure Estimates of Nodal Sets of Polyharmonic Functions. Chinese Annals of Mathematics, Series B, 2018, 39(5): 917-932 DOI:10.1007/s11401-018-0104-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almgren, F. J., Dirichlet’s problem for muptiple valued functions and the regularity of Mass minimizing integral currents, Minimal Submanifolds and Geodesics, Obata, M. (ed.), North Holland, Amsterdam, 1979, 1–6.

[2]

Donnelly H., Fefferman C.. Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math., 1988, 93: 161-183

[3]

Federer H.. Geometric Measure Theory, 1969, New York: Springer-Verlag

[4]

Garofalo N., Lin F. H.. Monotonicity properties of variational integrals, Ap-weights and unique continuation. Indiana Univ. Math. J., 1986, 35: 245-267

[5]

Garofalo N., Lin F. H.. Unique continuation for elliptic operators: a geometric-variational approach. Comm. Pure. Appl. Math., 1987, 40: 347-366

[6]

Han Q.. Schäuder estimates for elliptic operators with applications to nodal sets. The Journal of Geometric Analysis, 2000, 10(3): 455-480

[7]

Han Q., Hardt R., Lin F. H.. Singular sets of higher order elliptic equations. Communications in Partial Differential Equations, 2003, 28: 2045-2063

[8]

Han, Q. and Lin, F. H., Nodal sets of solutions of elliptic differential equations, http://nd.edu/qhan/nodal.pdf.

[9]

Lin F. H.. Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure. Appl. Math., 1991, 44: 287-308

[10]

Lin F. H., Yang X. P.. Geometric Measure Theory: An Introduction, Advanced Mathematics, 2002, Boston: International Press

[11]

Liu H. R., Tian L., Yang X. P.. The growth of H-harmonic functions on the Heisenberg group. Science China Mathematics, 2014, 54(4): 795-806

[12]

Schoen R. M., Yau S. T.. Lectures on Differential Geometry, 1994, Cambridge, MA: International Press

[13]

Tian L., Yang X. P.. Measure estimates of nodal sets of bi-harmonic functions. Journal of Differential Equations, 2014, 256(2): 558-576

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/