Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current

Gilles Carbou , Rida Jizzini

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 889 -916.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 889 -916. DOI: 10.1007/s11401-018-0103-7
Article

Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current

Author information +
History +
PDF

Abstract

The authors consider a model of ferromagnetic material subject to an electric current, and prove the local in time existence of very regular solutions for this model in the scale of H k spaces. In particular, they describe in detail the compatibility conditions at the boundary for the initial data.

Keywords

Ferromagnetic materials / Compatibility conditions / Existence result

Cite this article

Download citation ▾
Gilles Carbou, Rida Jizzini. Very Regular Solutions for the Landau-Lifschitz Equation with Electric Current. Chinese Annals of Mathematics, Series B, 2018, 39(5): 889-916 DOI:10.1007/s11401-018-0103-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alouges F., Soyeur A.. On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness. Nonlinear Anal., 1992, 18(11): 1071-1084

[2]

Aubin T.. Un théorème de compacité. C. R. Acad. Sci. Paris, 1963, 256: 5042-5044

[3]

Bonithon, G., Landau-Lifschitz-Gilbert equation with applied electric current, Discrete Contin. Dyn. Syst. 2007, Dynamical Systems and Differential Equations, Proceedings of the 6th AIMS International Conference, suppl., 138–144.

[4]

Boyer, F. and Fabrie, P., Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques & Applications, 52, Springer-Verlag, Berlin, 2006.

[5]

Brown W. F.. Micromagnetics, 1963, New York: Wiley

[6]

Carbou G., Fabrie P.. Time average in micromagnetism. J. Differential Equations, 1998, 147(2): 383-409

[7]

Carbou G., Fabrie P.. Regular solutions for Landau-Lifschitz equations in a bounded domain. Differential Integral Equations, 2001, 14: 213-229

[8]

Carbou G., Fabrie P., Guès O.. On the ferromagnetism equations in the non static case. Commun. Pure Appl. Anal., 2004, 3(3): 367-393

[9]

Foias G., Temam R.. Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation. An. Sc. Norm. Super. Pisa IV, 1978, 5: 29-63

[10]

Ladyzhenskaya, O. A., The boundary value problem of mathematical physics, Applied Math. Sciences, 49, Springer-Verlag, New York, 1985.

[11]

Landau L., Lifschitz E.. Electrodynamique des milieux continues, cours de physique théorique, 1969

[12]

Simon J.. Compact sets in the space L p(0, T;B). Ann. Mat. Pura Appl., 1987, 146(4): 65-96

[13]

Thiaville A., Nakatani Y., Miltat J., Susuki Y.. Micromagnetic understanding of current driven domain wall motion in patterned nanowires. Europhys. Lett., 2005, 69(6): 990-996

[14]

Thiaville A., Nakatani Y., Miltat J., Vernier N.. Domain wall motion by spin-polarized current: A micromagnetic study. J. Appl. Phys., Part 2, 2004, 95(11): 7049-7051

[15]

Thiaville A., Garcia J. M., Miltat J.. Domain wall dynamics in nanowires. Journal of Magnetism and Magnetic Materials, 2002, 242-245: 1061-1063

[16]

Visintin A.. On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics, 1985, 1(2): 69-84

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/