An Intrinsic Rigidity Theorem for Closed Minimal Hypersurfaces in $\mathbb{S}^5$ with Constant Nonnegative Scalar Curvature

Bing Tang , Ling Yang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 879 -888.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 879 -888. DOI: 10.1007/s11401-018-0102-8
Article

An Intrinsic Rigidity Theorem for Closed Minimal Hypersurfaces in $\mathbb{S}^5$ with Constant Nonnegative Scalar Curvature

Author information +
History +
PDF

Abstract

Let M 4 be a closed minimal hypersurface in $\mathbb{S}^5$ with constant nonnegative scalar curvature. Denote by f 3 the sum of the cubes of all principal curvatures, by g the number of distinct principal curvatures. It is proved that if both f 3 and g are constant, then M 4 is isoparametric. Moreover, the authors give all possible values for squared length of the second fundamental form of M 4. This result provides another piece of supporting evidence to the Chern conjecture.

Keywords

Chern conjecture / Isoparametric hypersurfaces / Scalar curvature / Minimal hypersurfaces in spheres

Cite this article

Download citation ▾
Bing Tang, Ling Yang. An Intrinsic Rigidity Theorem for Closed Minimal Hypersurfaces in $\mathbb{S}^5$ with Constant Nonnegative Scalar Curvature. Chinese Annals of Mathematics, Series B, 2018, 39(5): 879-888 DOI:10.1007/s11401-018-0102-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cartan E.. Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pur. Appl., 1938, 17(1): 177-191

[2]

Cartan E.. Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z., 1939, 45(1): 335-367

[3]

Cartan E.. Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Revista Univ. Tucuman, Serie A, 1940, 1: 5-22

[4]

Chang S.. A closed hypersurface with constant scalar and constant mean curvature in S4 is isoparametric. Comm. Anal. Geom., 1993, 1(1): 71-100

[5]

Chang S.. On minimal hypersurfaces with constant scalar curvatures in S4. J. Diff. Geom., 1993, 37(3): 523-534

[6]

Chern S. S.. Minimal submanifolds in a Riemannian manifold, 1968, Lawrence: University of Kansas

[7]

Chern S. S. D., Carmo M., Kobayashi S.. Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, 1968), 1970, New York: Springer-Verlag 59-75

[8]

Lusala T., Scherfner M., Souse Jr L.A.M.. Closed minimal Willimore hypersurfaces of S5(1) with constant scalar curvature. Asian J. Math., 2005, 9(1): 65-78

[9]

Münzner H. F.. Isoparametrische hyperflächen in sphären I. Math. Ann., 1980, 251(1): 57-71

[10]

Münzner H. F.. Isoparametrische hyperflächen in sphären II. Math. Ann., 1981, 256(2): 215-232

[11]

Scherfner M., Vrancken L., Weiβ S.. On closed minimal hypersurfaces with constant scalar curvature in S7. Geom. Dedic., 2012, 161(1): 409-416

[12]

Scherfner M., Weiβ S.. Towards a proof of the Chern conjecture for isoparametric hypersurfaces in spheres. Proc. 33, Süddeutsches Kolloquium über Differentialgeometrie, 2008, Vienna: Tech. Univ. Wien

[13]

Takagi R.. A class of hypersurfaces with constant principal curvatures in a sphere. J. Diff. Geom., 1976, 11(2): 225-233

[14]

Verstraelen L.. Sectional curvature of minimal submanifolds. Proc. Workshop on Diff. Geom., 1986 48-62

[15]

Yau S. T.. Problem section in the seminar on differential geometry. Ann. Math. Stud., 1982, 102: 669-706

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/