Biharmonic Maps from Tori into a 2-Sphere

Zeping Wang , Ye-Lin Ou , Hanchun Yang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 861 -878.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 861 -878. DOI: 10.1007/s11401-018-0101-9
Article

Biharmonic Maps from Tori into a 2-Sphere

Author information +
History +
PDF

Abstract

Biharmonic maps are generalizations of harmonic maps. A well-known result on harmonic maps between surfaces shows that there exists no harmonic map from a torus into a sphere (whatever the metrics chosen) in the homotopy class of maps of Brower degree ±1. It would be interesting to know if there exists any biharmonic map in that homotopy class of maps. The authors obtain some classifications on biharmonic maps from a torus into a sphere, where the torus is provided with a flat or a class of non-flat metrics whilst the sphere is provided with the standard metric. The results in this paper show that there exists no proper biharmonic maps of degree ±1 in a large family of maps from a torus into a sphere.

Keywords

Biharmonic maps / Biharmonic tori / Harmonic maps / Gauss maps / Maps into a sphere

Cite this article

Download citation ▾
Zeping Wang, Ye-Lin Ou, Hanchun Yang. Biharmonic Maps from Tori into a 2-Sphere. Chinese Annals of Mathematics, Series B, 2018, 39(5): 861-878 DOI:10.1007/s11401-018-0101-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alias L., Garcia-Martinez S., Rigoli M.. Biharmonic hypersurfaces in complete Riemannian manifolds. Pacific J. of Math, 2013, 263(1): 1-12

[2]

Akutagawa K., Maeta S.. Biharmonic properly immersed submanifolds in Euclidean spaces. Geom. Dedicata, 2013, 164: 351-355

[3]

Baird P., Kamissoko D.. On constructing biharmonic maps and metrics. Ann. Global Anal. Geom., 2003, 23(1): 65-75

[4]

Baird P., Fardoun A., Ouakkas S.. Conformal and semi-conformal biharmonic maps. Ann. Glob. Anal. Geom., 2008, 34: 403-414

[5]

Baird P., Fardoun A., Ouakkas S.. Liouville-type theorems for biharmonic maps between Riemannian manifolds. Adv. Calc. Var., 2010, 3: 49-68

[6]

Baird, P. and Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds, London Math. Soc. Monogr. (N. S.), 29, Oxford Univ. Press, 2003.

[7]

Balmus A., Montaldo S., Oniciuc C.. Classification results for biharmonic submanifolds in spheres. Israel J. Math., 2008, 168: 201-220

[8]

Balmus A., Montaldo S., Oniciuc C.. Biharmonic maps between warped product manifolds. J. Geom. Phys., 2007, 57(2): 449-466

[9]

Balmus A., Montaldo S., Oniciuc C.. Biharmonic PNMC Submanifolds in Spheres. preprint, Ark. Mat., 2013, 51: 197-221

[10]

Brendle S.. Minimal surfaces in S 3: A survey of recent results. Bull. Math. Sci., 2013, 3: 133-171

[11]

Caddeo R., Montaldo S., Oniciuc C.. Biharmonic submanifolds of S3. Internat. J. Math., 2001, 12(8): 867-876

[12]

Caddeo R., Montaldo S., Oniciuc C.. Biharmonic submanifolds in spheres. Israel J. Math., 2002, 130: 109-123

[13]

Chen B. Y.. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math., 1991, 17(2): 169-188

[14]

Chen B. Y.. Pseudo-Riemannian Geometry, d-Invariants and Applications, 2011

[15]

Chen B. Y.. Total Mean Curvature and Submanifolds of Finite Type, 2014, Hackensack, NJ: World Scientific Publishing

[16]

Chen B. Y., Ishikawa S.. Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu J. Math., 1998, 52(1): 167-185

[17]

Chen B. Y., Munteanu M.. Biharmonic ideal hypersurfaces in Euclidean spaces. Diff. Geom. Appl., 2013, 31(1): 1-16

[18]

Defever F.. Hypersurfaces of E 4 with harmonic mean curvature vector. Math. Nachr., 1998, 196: 61-69

[19]

Dimitric I.. Submanifolds of E m with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica, 1992, 20(1): 53-65

[20]

Eells J., Sampson J. H.. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 1964, 86: 109-160

[21]

Eells J., Wood J. C.. The existence and construction of certain harmonic maps. Symposia Mathematica, 1982, London, New York: Academic Press 123-138

[22]

Fu Y.. Biharmonic hypersurfaces with three distinct principal curvatures Euclidean spaces. Tohoku Math. J., 2015, 67(3): 465-479

[23]

Hasanis T., Vlachos T.. Hypersurfaces in E 4 with harmonic mean curvature vector field. Math. Nachr., 1995, 172: 145-169

[24]

Jiang G. Y.. 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math., Ser. A, 1986, 7: 389-402

[25]

Jiang G. Y.. Some non-existence theorems of 2-harmonic isometric immersions into Euclidean spaces. Chin. Ann. Math., Ser. A, 1987, 8(3): 376-383

[26]

Jiang G. Y.. 2-Harmonic isometric immersions between Riemannian manifolds. Chin. Ann. Math.. Ser. A, 1986, 7(2): 130-144

[27]

Lawson H. B.. Complete minimal surfaces in S3. Annals of Math, Second Series, 1970, 92(3): 335-374

[28]

Loubeau E., Oniciuc C.. On the biharmonic and harmonic indices of the Hopf map. Trans. Amer. Math. Soc., 2007, 359(11): 5239-5256

[29]

Loubeau E., Ou Y.-L.. Biharmonic maps and morphisms from conformal mappings. Tôhoku Math. J., 2010, 62(1): 55-73

[30]

Luo Y.. On biharmonic submanifolds in non-positively curved manifolds. J. Geom. Phys., 2015, 88: 76-87

[31]

Maeta S.. Properly immersed submanifolds in complete Riemannian manifolds. Adv. Math., 2014, 253: 139-151

[32]

Montaldo S., Oniciuc C.. A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina, 2006, 47(2): 1-22

[33]

Montaldo S., Ratto A.. A general approach to equivariant biharmonic maps. Mediterr. J. Math., 2013, 10: 1127-1139

[34]

Nakauchi N., Urakawa H.. Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results. Math., 2011

[35]

Nakauchi N., Urakawa H., Gudmundsson S.. Biharmonic maps into a Riemannian manifold of nonpositive curvature, 2012

[36]

Ou Y.-L.. p-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps. J. of Geo. Phy., 2006, 56(3): 358-374

[37]

Ou Y.-L.. On conformal biharmonic immersions. Ann. Global Analysis and Geometry, 2009, 36(2): 133-142

[38]

Ou Y.-L.. Biharmonic hypersurfaces in Riemannian manifolds. Pacific J. of Math., 2010, 248(1): 217-232

[39]

Ou Y.-L.. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces. J. Geom. Phys., 2012, 62: 751-762

[40]

Ou Y.-L.. Biharmonic conformal immersions into 3-dimensional manifolds. Medierranean J. Math., 2015, 12(2): 541-554

[41]

Ou Y.-L.. Some recent progress of biharmonic submanifolds. Contemporary Math. AMS, 2016

[42]

Ou Y.-L.. f-Biharmonic maps and f-biharmonic submanifolds II. J. Math. Anal. Appl., 2017, 455(2): 1285-1296

[43]

Ou Y.-L., Lu S.. Biharmonic maps in two dimensions. Annali di Matematica Pura ed Applicata, 2013, 192: 127-144

[44]

Ou Y.-L., Tang L.. On the generalized Chen’s conjecture on biharmonic submanifolds. Michigan Math. J., 2012, 61: 531-542

[45]

Ou Y.-L., Wang Z.-P.. Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries. J. Gem. Phys., 2011, 61: 1845-1853

[46]

Ouakkas S.. Biharmonic maps, conformal deformations and the Hopf maps. Diff. Geom. Appl., 2008, 26(5): 495-502

[47]

Smith R. T.. Harmonic mappings of spheres. Amer. J. Math., 1975, 97: 364-385

[48]

Tang L., Ou Y.-L.. Biharmonic hypersurfaces in a conformally flat space. Results Math., 2013, 64(1): 91-104

[49]

Wang Z.-P., Ou Y.-L.. Biharmonic Riemannian submersions from 3-manifolds. Math. Z., 2011, 269: 917-925

[50]

Wang Z.-P., Ou Y.-L., Yang H.-C.. Biharmonic maps from a 2-sphere. J. Geom. Phys., 2014, 77: 86-96

[51]

Wheeler G.. Chen’s conjecture and o-superbiharmonic submanifolds of Riemannian manifolds. Internat. J. Math., 2013, 24(4): 6

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/