Biharmonic Maps from Tori into a 2-Sphere
Zeping Wang , Ye-Lin Ou , Hanchun Yang
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 861 -878.
Biharmonic Maps from Tori into a 2-Sphere
Biharmonic maps are generalizations of harmonic maps. A well-known result on harmonic maps between surfaces shows that there exists no harmonic map from a torus into a sphere (whatever the metrics chosen) in the homotopy class of maps of Brower degree ±1. It would be interesting to know if there exists any biharmonic map in that homotopy class of maps. The authors obtain some classifications on biharmonic maps from a torus into a sphere, where the torus is provided with a flat or a class of non-flat metrics whilst the sphere is provided with the standard metric. The results in this paper show that there exists no proper biharmonic maps of degree ±1 in a large family of maps from a torus into a sphere.
Biharmonic maps / Biharmonic tori / Harmonic maps / Gauss maps / Maps into a sphere
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Baird, P. and Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds, London Math. Soc. Monogr. (N. S.), 29, Oxford Univ. Press, 2003. |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
/
| 〈 |
|
〉 |