PDF
Abstract
Let $\mathcal{A}$ be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ : $\mathcal{A}$ → $\mathcal{A}$ satisfies δ([[a, b], c]) = [[δ(a), b], c]+[[a, δ(b)], c]+ [[a, b], δ(c)] for any a, b, c ∈ $\mathcal{A}$ with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection in $\mathcal{A}$), then there exist an additive derivation d from $\mathcal{A}$ into itself and an additive map f : $\mathcal{A}$ → $\mathcal{Z}_\mathcal{A}$ vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that δ(a) = d(a) + f(a) for any a ∈ $\mathcal{A}$.
Keywords
Derivations
/
Lie triple derivations
/
von Neumann algebras
Cite this article
Download citation ▾
Lei Liu.
Lie Triple Derivations on von Neumann Algebras.
Chinese Annals of Mathematics, Series B, 2018, 39(5): 817-828 DOI:10.1007/s11401-018-0098-0
| [1] |
Alaminos J., Extremera J., Villena A. R., Bresar M.. Characterizing homomorphisms and derivations on C*-algebras. Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137: 1-7
|
| [2] |
Benkovic D.. Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra, 2015, 63(1): 141-165
|
| [3] |
Bresar M.. Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137: 9-21
|
| [4] |
Chebotar M. A., Ke W.-F., Lee P.-H.. Maps characterized by action on zero products. Pacific J. Math., 2004, 216: 217-228
|
| [5] |
Jing W., Lu S., Li P.. Characterizations of derivations on some operator algebras. Bull. Austral. Math. Soc., 2002, 66: 227-232
|
| [6] |
Kadison R. V., Ringrose J. R.. Fundamentals of the Theory of Operator Algebras, 1986, New York: Academic Press
|
| [7] |
Li J., Shen Q.. Characterizations of Lie higher and Lie triple derivations on triangular algebras. J. Korean Math. Soc., 2012, 49(2): 419-433
|
| [8] |
Miers C. R.. Lie isomorphisms of operator algebras. Pacific J. Math., 1971, 38: 717-735
|
| [9] |
Miers C. R.. Lie triple derivations of von Neumann algebras. Proc. Amer. Math. Soc., 1978, 71: 57-61
|
| [10] |
Sakai S.. Derivations of W*-algebras. Ann. Math., 1966, 83: 273-279
|
| [11] |
Zhang Y., Hou J., Qi X.. Characterizing derivations for any nest algebras on Banach spaces by their behaviors at an injective operator. Linear Algebra Appl., 2014, 449: 312-333
|
| [12] |
Zhu J., Zhao S.. Characterizations of all-derivable points in nest algebras. Proc. Amer. Math. Soc., 2013, 141: 2343-2350
|