Lie Triple Derivations on von Neumann Algebras

Lei Liu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 817 -828.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 817 -828. DOI: 10.1007/s11401-018-0098-0
Article

Lie Triple Derivations on von Neumann Algebras

Author information +
History +
PDF

Abstract

Let $\mathcal{A}$ be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ : $\mathcal{A}$ → $\mathcal{A}$ satisfies δ([[a, b], c]) = [[δ(a), b], c]+[[a, δ(b)], c]+ [[a, b], δ(c)] for any a, b, c ∈ $\mathcal{A}$ with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection in $\mathcal{A}$), then there exist an additive derivation d from $\mathcal{A}$ into itself and an additive map f : $\mathcal{A}$ → $\mathcal{Z}_\mathcal{A}$ vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that δ(a) = d(a) + f(a) for any a ∈ $\mathcal{A}$.

Keywords

Derivations / Lie triple derivations / von Neumann algebras

Cite this article

Download citation ▾
Lei Liu. Lie Triple Derivations on von Neumann Algebras. Chinese Annals of Mathematics, Series B, 2018, 39(5): 817-828 DOI:10.1007/s11401-018-0098-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alaminos J., Extremera J., Villena A. R., Bresar M.. Characterizing homomorphisms and derivations on C*-algebras. Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137: 1-7

[2]

Benkovic D.. Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra, 2015, 63(1): 141-165

[3]

Bresar M.. Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. Roy. Soc. Edinburgh Sect. A, 2007, 137: 9-21

[4]

Chebotar M. A., Ke W.-F., Lee P.-H.. Maps characterized by action on zero products. Pacific J. Math., 2004, 216: 217-228

[5]

Jing W., Lu S., Li P.. Characterizations of derivations on some operator algebras. Bull. Austral. Math. Soc., 2002, 66: 227-232

[6]

Kadison R. V., Ringrose J. R.. Fundamentals of the Theory of Operator Algebras, 1986, New York: Academic Press

[7]

Li J., Shen Q.. Characterizations of Lie higher and Lie triple derivations on triangular algebras. J. Korean Math. Soc., 2012, 49(2): 419-433

[8]

Miers C. R.. Lie isomorphisms of operator algebras. Pacific J. Math., 1971, 38: 717-735

[9]

Miers C. R.. Lie triple derivations of von Neumann algebras. Proc. Amer. Math. Soc., 1978, 71: 57-61

[10]

Sakai S.. Derivations of W*-algebras. Ann. Math., 1966, 83: 273-279

[11]

Zhang Y., Hou J., Qi X.. Characterizing derivations for any nest algebras on Banach spaces by their behaviors at an injective operator. Linear Algebra Appl., 2014, 449: 312-333

[12]

Zhu J., Zhao S.. Characterizations of all-derivable points in nest algebras. Proc. Amer. Math. Soc., 2013, 141: 2343-2350

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/