Stability of the Equilibrium to the Boltzmann Equation with Large Potential Force

Xiuhui Yang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 805 -816.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 805 -816. DOI: 10.1007/s11401-018-0097-1
Article

Stability of the Equilibrium to the Boltzmann Equation with Large Potential Force

Author information +
History +
PDF

Abstract

The Boltzmann equation with external potential force exists a unique equilibrium—local Maxwellian. The author constructs the nonlinear stability of the equilibrium when the initial datum is a small perturbation of the local Maxwellian in the whole space ℝ3. Compared with the previous result [Ukai, S., Yang, T. and Zhao, H.-J., Global solutions to the Boltzmann equation with external forces, Anal. Appl. (Singap.), 3, 2005, 157–193], no smallness condition on the Sobolev norm H 1 of the potential is needed in our arguments. The proof is based on the entropy-energy inequality and the L 2L estimates.

Keywords

Boltzmann equation / Large potential force / Stability / Entropy-energy inequality / L 2L method

Cite this article

Download citation ▾
Xiuhui Yang. Stability of the Equilibrium to the Boltzmann Equation with Large Potential Force. Chinese Annals of Mathematics, Series B, 2018, 39(5): 805-816 DOI:10.1007/s11401-018-0097-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duan R.. Stability of the Boltzmann equation with potential forces on torus. Phys. D, 2009, 238(17): 1808-1820

[2]

Duan R., Ukai S., Yang T., Zhao H.-J.. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm. Math. Phys., 2008, 277: 189-236

[3]

Esposito R., Guo Y., Marra R.. Phase transition in a Vlasov-Boltzmann binary mixture. Commun. Math. Phys., 2010, 296: 1-33

[4]

Guo Y.. Bounded solutions to the Boltzmann equation. Quart. Appl. Math., 2010, 68: 143-148

[5]

Guo Y.. Decay and continuity of Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal., 2010, 197: 713-809

[6]

Guo Y.. The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math., 2002, 55: 1104-1135

[7]

Kim C.. Boltzmann equation with a large potential in a periodic box. Comm. Part. Diff. Eq., 2014, 39(8): 1393-1423

[8]

Lei Y.. The non-cutoff Boltzmann equation with potential force in the whole space. Acta Math. Sci. Ser. B (Engl. Ed.), 2014, 34(5): 1519-1539

[9]

Li F.-C., Yu H.-J.. Global existence of classical solutions to the Boltzmann equation with external force for hard potentials. Int. Math. Res. Not. IMRN, 2008

[10]

Ukai S., Yang T., Zhao H.-J.. Global solutions to the Boltzmann equation with external forces. Anal. Appl. (Singap.), 2005, 3: 157-193

[11]

Ukai S., Yang T., Zhao H.-J.. Convergence rate to stationary solutions for Boltzmann equation with external force. Chin. Ann. Math. Ser. B, 2006, 27(4): 363-378

[12]

Yu H.-J.. Global classical solutions to the Boltzmann equation with external force. Commun. Pure Appl. Anal., 2009, 8: 1647-1668

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/