Stochastic Maximum Principle for Forward-Backward Regime Switching Jump Diffusion Systems and Applications to Finance

Siyu Lv , Zhen Wu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 773 -790.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (5) : 773 -790. DOI: 10.1007/s11401-018-0095-3
Article

Stochastic Maximum Principle for Forward-Backward Regime Switching Jump Diffusion Systems and Applications to Finance

Author information +
History +
PDF

Abstract

The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.

Keywords

Stochastic maximum principle / Dynamic programming principle / Forward-backward stochastic differential equation / Regime switching / Jump diffusion

Cite this article

Download citation ▾
Siyu Lv, Zhen Wu. Stochastic Maximum Principle for Forward-Backward Regime Switching Jump Diffusion Systems and Applications to Finance. Chinese Annals of Mathematics, Series B, 2018, 39(5): 773-790 DOI:10.1007/s11401-018-0095-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahlali S.. Necessary and sufficient conditions of optimality for optimal control problems of forward-backward systems. SIAM J. Theory Probab. Appl., 2010, 54(4): 553-570

[2]

Bismut J.. An introductory approach to duality in optimal stochastic control. SIAM Rew., 1978, 20(1): 62-78

[3]

Dokuchaev N., Zhou X. Y.. Stochastic controls with terminal contingent conditions. J. Math. Anal. Appl., 1999, 238(1): 143-165

[4]

Donnelly C.. Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math. Optim., 2011, 64(2): 155-169

[5]

Elliott R., Aggoun L., Moore J.. Hidden Markov Models: Estimation and Control, 1994, New York: Springer-Verlag

[6]

Framstad N., Økesendal B., Sulem A.. Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory Appl., 2004, 121(1): 77-98

[7]

Haussmann U.. General necessary conditions for optiaml control of stochastic systems. Math. Programming Stud., 1976, 6: 34-48

[8]

Huang J. H., Wang G. C., Wu Z.. Optimal premium policy of an insurance firm: Full and partial information. Insur. Math. Econ., 2010, 47(2): 208-235

[9]

Kushner H.. Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim., 1972, 10(3): 550-565

[10]

Øksendal B., Sulem A.. Maximum principles for optimal control of forward-backward stochastic differential equations with jumps. SIAM J. Control Optim., 2009, 48(5): 2945-2976

[11]

Pardoux E., Peng S. G.. Adapted solution of a backward stochastic differential equation. Systems Control Lett., 1990, 14(1): 55-61

[12]

Peng S. G.. A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim., 1990, 28(4): 966-979

[13]

Peng S. G.. A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stoch. Stoch. Rep., 1992, 38(2): 119-134

[14]

Peng S. G.. Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim., 1993, 27(2): 125-144

[15]

Rockafellar R.. Convex Analysis, 1997, Princeton, New Jersey: Princeton University Press

[16]

Shi J. T.. Relationship between maximum principle and dynamic programming principle for stochastic recursive optimal control problems of jump diffusions. Optim. Control Appl. Meth., 2014, 35(1): 61-76

[17]

Tao R., Wu Z.. Maximum principle for optimal control problems of forward-backward regime-switching system and application. Systems Control Lett., 2012, 61(9): 911-917

[18]

Wang G. C., Yu Z.. A Pontryagin’s maximum principle non-zero sum differential games of BSDEs with applications. IEEE Trans. Autom. Control, 2010, 55(7): 1742-1747

[19]

Wu Z.. Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Systems Sci. Math. Sci., 1998, 11(3): 249-259

[20]

Wu Z.. A general maximum principle for optimal control of forward-backward stochastic systems. Automatica, 2013, 49(5): 1473-1480

[21]

Xu W. S.. Stochastic maximum principle for optimal control problem of forward backward system. J. Austral. Math. Soc. Ser. B, 1995, 37(2): 172-185

[22]

Yong J. M.. Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim., 2010, 48(6): 4119-4156

[23]

Zhang X., Elliott R., Siu T.. A stochastic maximum principle for a Markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control Optim., 2012, 50(2): 964-990

[24]

Zhou X. Y.. Sufficient conditions of optimality for stochastic systems with controllable diffusions. IEEE Trans. Autom. Control, 1996, 41(8): 1176-1179

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/