Hessian Comparison and Spectrum Lower Bound of Almost Hermitian Manifolds

Chengjie Yu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 755 -772.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 755 -772. DOI: 10.1007/s11401-018-0094-4
Article

Hessian Comparison and Spectrum Lower Bound of Almost Hermitian Manifolds

Author information +
History +
PDF

Abstract

The authors obtain a complex Hessian comparison for almost Hermitian manifolds, which generalizes the Laplacian comparison for almost Hermitian manifolds by Tossati, and a sharp spectrum lower bound for compact quasi Kähler manifolds and a sharp complex Hessian comparison on nearly Kähler manifolds that generalize previous results of Aubin, Li Wang and Tam-Yu.

Keywords

Almost-Hermitian manifolds / Quasi Kähler manifolds / Nearly Kähler manifolds

Cite this article

Download citation ▾
Chengjie Yu. Hessian Comparison and Spectrum Lower Bound of Almost Hermitian Manifolds. Chinese Annals of Mathematics, Series B, 2018, 39(4): 755-772 DOI:10.1007/s11401-018-0094-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Apostolov, VestislavDrăghici Tedi, The curvature and the integrability of almost-Kähler manifolds: a survey, Symplectic and Contact Topology: Interactions and Perspectives (Toronto, ON/Montreal, QC, 2001), 2003

[2]

Aubin, Thierry Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, 1998

[3]

Butruille Jean-Baptiste. Classification des variétés approximativement kähleriennes homogénes (in French), (Classification of nearly-Kähler homogeneous manifolds), Ann. Global Anal. Geom., 2005, 27(3): 201-225

[4]

Chen Z. H., Yang H. C.. Estimation of the upper bound on the Levi form of the distance function on Hermitian manifolds and some of its applications. Acta Math. Sinica, 1984, 27(5): 631-643

[5]

Cheng S. Y.. Eigenvalue comparison theorems and its geometric applications. Math. Z., 1975, 143(3): 289-297

[6]

Chern S. S.. Characteristic classes of Hermitian manifolds. Ann. of Math., 1946, 47(1): 85-121

[7]

Donaldson S. K.. Remarks on gauge theory, complex geometry and 4-manifold topology, 1997

[8]

Donaldson S. K.. Two-forms on four-manifolds and elliptic equations, 2006

[9]

Ehresmann C., Libermann P.. Sur les structures presque hermitiennes isotropes. C. R. Acad. Sci. Paris, 1951, 232: 1281-1283

[10]

Fan X. Q., Tam L.-F., Yu C. J.. Product of almost Hermitian manifolds. J. Geom. Anal., 2014, 24(3): 1425-1446

[11]

Futaki A.. Kähler-Einstein Metrics and Integral Invariants, Lecture Notes in Mathematics, 1988

[12]

Gauduchon P.. Hermitian connections and Dirac operators. Boll. Unione Mat. Ital. B., 1997

[13]

Goldberg S. I.. Integrability of almost Kaehler manifolds. Proc. Amer. Math. Soc., 1969, 21: 96-100

[14]

Gray Al.fred. Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J., 1976, 28(4): 601-612

[15]

Gray Al.fred. The structure of nearly Kähler manifolds, Math. Ann., 1976, 223(3): 233-248

[16]

Gray Al.fred. Nearly Kähler manifolds, J. Differential Geometry, 1970, 4: 283-309

[17]

Gray Al.fred. Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry, 1972, 7: 343-369

[18]

Kirichenko V. F.. K-spaces of maximal rank. Mat. Zametki, 1977, 22(4): 465-476

[19]

Kobayashi S.. Almost complex manifolds and hyperbolicity. Results Math., 2001 246-256

[20]

Kobayashi S.. Natural connections in almost complex manifolds, Explorations in complex and Riemannian geometry. Contemp. Math., 2003

[21]

Li P.. Lecture notes on geometric analysis, Lecture Notes Series, 6, Seoul National University, 1993

[22]

Li P., Wang J. P.. Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differential Geometry, 2005, 69(1): 43-74

[23]

Lichnerowicz A.. Géometrie des Groupes de Transformations, 1958

[24]

Nagy P.-An.di. Nearly Kähler geometry and Riemannian foliations, Asian J. Math., 2002, 6(3): 481-504

[25]

Nagy P.-An.di. On nearly-Kähler geometry, Ann. Global Anal. Geom., 2002, 22(2): 167-178

[26]

Obata M.. Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan, 1962, 14: 333-340

[27]

Royden H. L.. Comparison theorems for the matrix Riccati equation. Comm. Pure Appl. Math., 1988, 41(5): 739-746

[28]

Tam L.-F., Yu C. J.. Some comparison theorems for Kähler manifolds. Manuscripta Math., 2012, 137(3–4): 483-495

[29]

Tosatti V.. A general Schwarz lemma for almost-Hermitian manifolds. Comm. Anal. Geom., 2007, 15(5): 1063-1086

[30]

Tosatti V., Weinkove B., Yau S. T.. Taming symplectic forms and the Calabi-Yau equation. Proc. London Math. Soc., 2008, 97(3): 401-424

[31]

Yau S. T.. A general Schwarz lemma for Kähler manifolds. Amer. J. Math., 1978, 100(1): 197-203

[32]

Yu C. J.. Curvature identities on almost Hermitian manifolds and applications. Science in China, Mathamatics, 2017, 60(2): 285-300

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/