Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces

Jiecheng Chen , Xiaoli Chen , Fangting Jin

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 721 -738.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 721 -738. DOI: 10.1007/s11401-018-0092-6
Article

Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces

Author information +
History +
PDF

Abstract

In this paper, some endpoint estimates for the generalized multilinear fractional integrals I α,m on the non-homogeneous metric spaces are established.

Keywords

Generalized multilinear fractional integrals / Lipschitz space / RBMO space / Morrey space / Non-homogeneous metric space

Cite this article

Download citation ▾
Jiecheng Chen, Xiaoli Chen, Fangting Jin. Endpoint Estimates for Generalized Multilinear Fractional Integrals on the Non-homogeneous Metric Spaces. Chinese Annals of Mathematics, Series B, 2018, 39(4): 721-738 DOI:10.1007/s11401-018-0092-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bui T. A., Duong X. T.. Hardy spaces. regularized BMO spaces and the Boundedness of Calderón-Zygmund operators on non-homogeneous spaces, J. Geom. Anal., 2013, 23: 895-932

[2]

Cao Y., Zhou J.. Morrey spaces for nonhomogeneous metric measure spaces. Abstract and Applied Analysis, 2013

[3]

Chen, D. X., Chen, X. L. and Jin, F. T., The boundedness of multilinear fractional integrals on nonhomogeneous metric measure space, J. Non. Sci. Appl., preprint.

[4]

Chen W., Sawyer E.. A note on commutators of fractional integrals with RBMO(μ) functions. Illinois J. Math., 2002, 46: 1287-1298

[5]

Chen X., Xue Q. Y.. Weighted estimates for a class of multilinear fractional type operators. J. Math. Anal. Appl., 2010, 362: 355-373

[6]

Coifman R. R., Weiss G.. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, 1971

[7]

Coifman R. R., Weiss G.. Extentions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 1977, 83: 569-645

[8]

Fu X., Lin H. B., Yang D. C., Yang D. Y.. Hardy spaces Hp over nonhomogeneous metric measure spaces and their applications. Sci. China Math., 2015, 58: 309-388

[9]

Fu X., Yang D. C., Yuan W.. Generalized fractional integrals and their commutators over nonhomogeneous spaces. Taiwanese Journal of Mathematics, 2014, 18: 509-557

[10]

Grafakos L.. On multilinear fractional integrals. Studia Math., 1992, 102: 49-56

[11]

Hajlasz P., Koskela P.. Sobolev met Poincaré, 2000

[12]

Heinenon J.. Lectures on Analysis on Metric Spaces, 2001

[13]

Hu G. E., Meng Y., Yang D. C.. Boundedness of Riesz potentials in nonhomogeneous spaces. Acta Math. Sci. Ser. B, 2008, 28: 371-382

[14]

Hytönen T.. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat., 2010, 54: 485-504

[15]

Hytönen T., Yang D. C., Yang D. Y.. The Hardy space H 1 on nonhomogeneous metric spaces. Math. Proc. Cambridge Philos. Soc., 2012, 153: 9-31

[16]

Kenig C., Stein E.. Multilinear estimates and fractional integration. Math. Res. Lett., 1999, 6: 1-15

[17]

Lu Y., Yang D. C., Yuan W.. Morrey-Sobolev spaces on metric measure spaces. Potential Anal., 2014, 41: 215-243

[18]

Moen K.. Weighted inequalities for multilinear fractional operators. Collect. Math., 2009, 60: 213-228

[19]

Tang L.. Endpoint estimates for multilinear fractional integrals. J. Aust. Math. Soc., 2008, 84: 419-429

[20]

Tolsa X.. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math., 2003, 190: 105-149

[21]

Yang D. C., Yang D. Y., Fu X.. The Hardy space H 1 on non-homogeneous spaces and its applications. Eurasian Math. J., 2013, 4: 104-139

[22]

Yang D. C., Yang D. Y., Hu G. E.. The Hardy Space H 1 with Non-doubling Measures and Their Applications, 2013

[23]

Zhou J., Wang D.. Lipschitz spaces and fractional integral operators associated with nonhomogeneous metric measure spaces, 2014

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/