A Schwarz Lemma at the Boundary of Hilbert Balls

Zhihua Chen , Yang Liu , Yifei Pan

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 695 -704.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 695 -704. DOI: 10.1007/s11401-018-0090-8
Article

A Schwarz Lemma at the Boundary of Hilbert Balls

Author information +
History +
PDF

Abstract

In this paper, the authors prove a general Schwarz lemma at the boundary for the holomorphic mapping f between unit balls $\mathbb{B}$ and $\mathbb{B'}$ in separable complex Hilbert spaces $\mathcal{H}$ and $\mathcal{H'}$, respectively. It is found that if the mapping fC 1+α at ${z_0} \in \partial \mathbb{B}$ with $f\left( {{z_0}} \right) = {w_0} \in \partial \mathbb{B}'$, then the Fréchet derivative operator Df(z 0) maps the tangent space ${T_{{z_0}}}(\partial {\mathbb{B}^n})$ to ${T_{{w_0}}}(\partial {\mathbb{B}'})$, the holomorphic tangent space $T_{{z_0}}^{(1,0)}(\partial {\mathbb{B}^n})$ to $T_{{w_0}}^{(1,0)}(\partial {\mathbb{B}'})$, respectively.

Keywords

Boundary Schwarz lemma / Separable Hilbert space / Holomorphic mapping / Unit ball

Cite this article

Download citation ▾
Zhihua Chen, Yang Liu, Yifei Pan. A Schwarz Lemma at the Boundary of Hilbert Balls. Chinese Annals of Mathematics, Series B, 2018, 39(4): 695-704 DOI:10.1007/s11401-018-0090-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham R., Marsden J. E., Ratiu T.. Manifolds, Tensor Analysis, and Applications, 1988

[2]

Ruscheweyh S.. Two remarks on bounded analytic functions. Serdica Math. J., 1985, 11(2): 200-202

[3]

Dai S., Pan Y.. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proceedings of the American Mathematical Society, 2008, 136(2): 635-640

[4]

Rudin W.. Function Theory in Polydiscs, 1969

[5]

Rudin W.. Function Theory in the Unit Ball of Cn, 2009

[6]

Dai S., Chen H., Pan Y.. The Schwarz-Pick lemma of high order in several variables. The Michigan Mathematical Journal, 2010, 59(3): 517-533

[7]

Liu Y., Chen Z.. Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball. Journal of Mathematical Analysis and Applications, 2011, 376(1): 123-128

[8]

Garnett J. B.. Bounded Analytic Functions, 1981

[9]

Liu T., Wang J., Tang X.. Schwarz lemma at the boundary of the unit ball in Cn and its applications. Journal of Geometry Analysis, 2015, 25: 1890-1914

[10]

Tang X., Liu T., Lu J.. Schwarz lemma at the boundary of the unit polydisk in Cn. Science China Mathematics, 2015, 58(8): 1639-1652

[11]

Tang X., Liu T.. The Schwarz lemma at the boundary of the egg domain B p1,p2 in Cn. Canad. Math. Bull., 2015, 58(2): 381-392

[12]

Liu Y., Dai S., Pan Y.. Boundary Schwarz lemma for pluriharmonic mappings between unit balls. Journal of Mathematical Analysis and Applications, 2016, 433(1): 487-495

[13]

Dai S., Chen H., Pan Y.. The high order Schwarz-Pick lemma on complex Hilbert balls. Science China Mathematics, 2010, 53(10): 2649-2656

[14]

Gong S.. Convex and Starlike Mappings in Several Complex Variables, 1998

[15]

Kobayashi S.. Intrinsic metrics on complex manifolds. Bulletin of the American Mathematical Society, 1967, 73(3): 347-349

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/