Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients

Qian Lei , Han Yang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 643 -664.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 643 -664. DOI: 10.1007/s11401-018-0087-3
Article

Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients

Author information +
History +
PDF

Abstract

The authors consider the critical exponent problem for the variable coefficients wave equation with a space dependent potential and source term. For sufficiently small data with compact support, if the power of nonlinearity is larger than the expected exponent, it is proved that there exists a global solution. Furthermore, the precise decay estimates for the energy, L 2 and L p+1 norms of solutions are also established. In addition, the blow-up of the solutions is proved for arbitrary initial data with compact support when the power of nonlinearity is less than some constant.

Keywords

Semilinear wave equations / Global existence / Energy decay / L 2 and L p+1 estimates / Blow up

Cite this article

Download citation ▾
Qian Lei, Han Yang. Global Existence and Blow-up for Semilinear Wave Equations with Variable Coefficients. Chinese Annals of Mathematics, Series B, 2018, 39(4): 643-664 DOI:10.1007/s11401-018-0087-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng S. J., Feng D. X.. Nonlinear internal damping of wave equations with variable coefficients. Acta Math. Sin., 2006, 20(6): 1057-1072

[2]

Fujita H.. On the blowing up of solutions of the Cauchy problem for ut = + u1+. J. Fac. Sci. Univ. Tokyo Sec. 1A, 1966, 13: 109-124

[3]

Georgiev V., Lindblad H., Sogge C.. Weighted Strichards estimates and global existence for semilinear wave equation. Amer. J. Math., 1997, 119: 1291-1319

[4]

Glassey R.. Existence in the large for u = F(u) in two dimensions. Math. Z., 1981, 178: 233-261

[5]

Ikawa M.. Hyperbolic Partial Differential Equations and Wave Phenomena, 2000

[6]

Ikehata R., Tanizawa K.. Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data. Nonlinear Analysis, 2005, 61: 1189-1208

[7]

Ikehata R., Todorova G., Yordanov B.. Critical exponent for semilinear wave equations with space-dependent potential. Funkcial Ekvac., 2009, 52(3): 411-435

[8]

John F.. Blow up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 1979, 28: 235-268

[9]

Lindblad H., Sogge C.. On the small-power semilinear wave equations, 1995

[10]

Nishihara K.. Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping. Tokyo J. Math., 2011, 34: 327-343

[11]

Radu P., Todorova G., Yordanov B.. Decay estimates for wave equations with variable coefficients. Trans. Amer. Math. Soc., 2010, 362(5): 2279-2299

[12]

Sideris T.. Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations, 1984, 52: 378-406

[13]

Strauss W.. Nonlinear scattering theory at low energy. J. Funct. Anal., 1981, 43: 281-293

[14]

Strauss W.. Nonlinear wave equations, C.B.M.S. Lecture Notes, 1989

[15]

Takamura H., Wakasa K.. Almost global solutions of semilinear wave equations with the critical exponent in high dimensions. Nonlinear Analysis, 2004, 109: 187-229

[16]

Tataru D.. Stricharts estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Amer. Math. Soc., 2001, 353(2): 795-807

[17]

Todorova G., Yordanov B.. Critical exponent for a nonlinear wave equation with damping. C. R. Acad. Sci. Paris, 2000, 330: 557-562

[18]

Todorova G., Yordanov B.. Critical exponent for a nonlinear wave equation with damping. J. Differ-ential Equations, 2001, 174: 464-489

[19]

Todorova G., Yordanov B.. Weighted L2-estimates for dissipative wave equations with variable coef-ficients. J. Differential Equations, 2009, 246(12): 4497-4518

[20]

Wakasugi Y.. Small data global existence for the semilinear wave equation with space-time dependent damping. J. Math. Anal. Appl., 2012, 393: 66-79

[21]

Zhang Q. S.. A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris, 2001, 333: 109-114

[22]

Zhou Y.. Cauchy problem for semilinear wave equations in four space dimensions with small initial data. J. Partial Differential Equations, 1995, 8: 135-144

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/