Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
Changjing Li , Quanyuan Chen , Ting Wang
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 633 -642.
Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras
Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras. For $A,B \in \mathcal{A}$, define by [A,B]* = AB − BA* the skew Lie product of A and B. In this article, it is proved that a bijective map $\Phi :\mathcal{A} \to \mathcal{B}$ satisfies Φ([[A,B]*,C]*) = [[Φ(A),Φ(B)]*,Φ(C)]* for all $A,B,C \in \mathcal{A}$ if and only if Φ is a linear *-isomorphism, or a conjugate linear *- isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.
Jordan triple *-product / Isomorphism / von Neumann algebras
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
/
| 〈 |
|
〉 |