Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras

Changjing Li , Quanyuan Chen , Ting Wang

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 633 -642.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 633 -642. DOI: 10.1007/s11401-018-0086-4
Article

Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras

Author information +
History +
PDF

Abstract

Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras. For $A,B \in \mathcal{A}$, define by [A,B]* = ABBA* the skew Lie product of A and B. In this article, it is proved that a bijective map $\Phi :\mathcal{A} \to \mathcal{B}$ satisfies Φ([[A,B]*,C]*) = [[Φ(A),Φ(B)]*,Φ(C)]* for all $A,B,C \in \mathcal{A}$ if and only if Φ is a linear *-isomorphism, or a conjugate linear *- isomorphism, or the negative of a linear *-isomorphism, or the negative of a conjugate linear *-isomorphism.

Keywords

Jordan triple *-product / Isomorphism / von Neumann algebras

Cite this article

Download citation ▾
Changjing Li, Quanyuan Chen, Ting Wang. Nonlinear Maps Preserving the Jordan Triple *-Product on Factor von Neumann Algebras. Chinese Annals of Mathematics, Series B, 2018, 39(4): 633-642 DOI:10.1007/s11401-018-0086-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai Z., Du S.. Maps preserving products XY −Y X on von Neumann algebras. J. Math. Anal. Appl., 2012, 386: 103-109

[2]

Brešar M., Fošner A.. On ring with involution equipped with some new product. Publ. Math. Debrecen, 2000, 57: 121-134

[3]

Dai L., Lu F.. Nonlinear maps preserving Jordan *-products. J. Math. Anal. Appl., 2014, 409: 180-188

[4]

Halmos P. R.. A Hilbert Space Problem Book, 1982

[5]

Huo D., Zheng B., Liu H.. Nonlinear maps preserving Jordan triple η-*-products. J. Math. Anal. Appl., 2015, 430: 830-844

[6]

Li C., Lu F., Fang X.. Mappings preserving new product XY +Y X on factor von Neumann algebras. Linear Algebra Appl., 2013, 438: 2339-2345

[7]

Li C., Lu F., Fang X.. Nonlinear ζ-Jordan *-derivations on von Neumann algebras. Linear Multilinear Algebra, 2014, 62: 466-473

[8]

Molnár L.. A condition for a subspace of B(H) to be an ideal. Linear Algebra Appl., 1996, 235: 229-234

[9]

Šemrl P.. On Jordan *-derivations and an application. Colloq. Math., 1990, 59: 241-251

[10]

Šemrl P.. Quadratic functionals and Jordan *-derivations. Studia Math., 1991, 97: 157-165

[11]

Šemrl P.. Quadratic and quasi-quadratic functionals. Proc. Amer. Math. Soc., 1993, 119: 1105-1113

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/