The Estimates of All Homogeneous Expansions for a Subclass of ε Quasi-convex Mappings in Several Complex Variables

Xiaosong Liu , Taishun Liu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 621 -632.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (4) : 621 -632. DOI: 10.1007/s11401-018-0085-5
Article

The Estimates of All Homogeneous Expansions for a Subclass of ε Quasi-convex Mappings in Several Complex Variables

Author information +
History +
PDF

Abstract

The authors obtain the estimates of all homogeneous expansions for a subclass of ε quasi-convex mappings on the unit ball in complex Banach spaces. Moreover, the estimates of all homogeneous expansions for the above generalized mappings on the unit polydisk in ℂ n are also obtained. Especially, the above estimates are only sharp for a subclass of starlike mappings, quasi-convex mappings and quasi-convex mappings of type $\mathbb{A}$. The results are the generalization of many known results.

Keywords

Homogeneous expansion / ε quasi-convex mapping / ε starlike mapping / Starlike mapping / Quasi-convex mapping / Quasi-convex mappings of type $\mathbb{A}$

Cite this article

Download citation ▾
Xiaosong Liu, Taishun Liu. The Estimates of All Homogeneous Expansions for a Subclass of ε Quasi-convex Mappings in Several Complex Variables. Chinese Annals of Mathematics, Series B, 2018, 39(4): 621-632 DOI:10.1007/s11401-018-0085-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gong S.. The Bieberbach Conjecture, 1999

[2]

Gong S., Liu T. S.. On the Roper-Suffridge extension operator. J. Analyse Math., 2002, 88: 397-404

[3]

Gong S., Liu T. S.. The generalized Roper-Suffridge extension operator. J. Math. Anal. Appl., 2003, 323: 425-434

[4]

Hörmander L.. On a theorem of Graced. Math. Scand., 1954, 2: 55-64

[5]

Liu M. S., Zhu Y. C.. On "quasi-convex mappings in the unit ball of a complex Banach space. J. Math. Anal. Appl., 2006, 323: 1047-1070

[6]

Liu T. S., Gong S.. Family of "starlike mappings (II). Chin. Ann. Math. Ser. A, 2003, 24(6): 625-638

[7]

Liu T. S., Liu X. S.. A refinement about estimation of expansion coefficients for normalized biholomorphic mappings, Sci. China Ser. A. Math., 2005, 48: 865-879

[8]

Liu X. S., Liu T. S., Xu Q. H.. A proof of a weak version of the Bieberbach conjecture in several complex variables. Sci. China Math., 2015, 58: 2531-2540

[9]

Zhang W. J., Liu T. S.. The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space. Sci. China Ser. A, Math., 2002, 45: 1538-1547

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/