Global Asymptotics of Orthogonal Polynomials Associated with a Generalized Freud Weight

Zhi-Tao Wen , Roderick Wong , Shuai-Xia Xu

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 553 -596.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 553 -596. DOI: 10.1007/s11401-018-0082-8
Article

Global Asymptotics of Orthogonal Polynomials Associated with a Generalized Freud Weight

Author information +
History +
PDF

Abstract

In this paper, the authors consider the asymptotic behavior of the monic polynomials orthogonal with respect to the weight function w(x) = |x|2αe−(x4+tx2), x ∈ R, where α is a constant larger than −1/2 and t is any real number. They consider this problem in three separate cases: (i) c > −2, (ii) c = −2, and (iii) c < −2, where c:= tN −1/2 is a constant, N = n + α and n is the degree of the polynomial. In the first two cases, the support of the associated equilibrium measure μt is a single interval, whereas in the third case the support of μt consists of two intervals. In each case, globally uniform asymptotic expansions are obtained in several regions. These regions together cover the whole complex plane. The approach is based on a modified version of the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou (1993).

Keywords

Orthogonal polynomials / Globally uniform asymptotics / Riemann-Hilbert problems / The second Painlevé transcendent / Theta function

Cite this article

Download citation ▾
Zhi-Tao Wen, Roderick Wong, Shuai-Xia Xu. Global Asymptotics of Orthogonal Polynomials Associated with a Generalized Freud Weight. Chinese Annals of Mathematics, Series B, 2018, 39(3): 553-596 DOI:10.1007/s11401-018-0082-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M. J., Fokas A. S.. Complex variables: introduction and applications, 1997, Cambridge: Cambridge Texts in Applied Mathematics, Cambridge University Press

[2]

Bertola M., Tovbis A.. Asymptotics of orthogonal polynomials with complex varying quartic weight: Global structure. critical point behavior and the first Painlevé equation, Constr. Approx., 2015, 41(3): 529-587

[3]

SIGMA, 2016, 12 118

[4]

Bleher P., Its A.. Semiclassical asymptotics of orthogonal polynomials. Riemann-Hilbert problem, and universality in the matrix model, Ann. Math., 1999, 150(1): 185-266

[5]

Claeys T., Kuijlaars A. B. J.. Universality of the double scaling limit in random matrix models. Comm. Pure Appl. Math., 2006, 59(11): 1573-1603

[6]

Claeys T., Kuijlaars A. B. J., Vanlessen M.. Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math., 2008, 168(2): 601-641

[7]

Clarkson P. A., Jordaan K.. Properties of generalized freud polynomials. J. Approx. Theory, 2018, 225: 148-175

[8]

Clarkson P. A., Jordaan K., Kelil A.. A generalized Freud weight. Stud. Appl. Math., 2016, 136(3): 288-320

[9]

Deift, P. A., Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 1999.

[10]

Deift P. A., Kriecherbauer T., McLaughlin K. T.-R. Uniform asymptotics for polynomials or-thogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math., 1999, 52(11): 1335-1425

[11]

Deift P. A., Kriecherbauer T., McLaughlin K. T.-R. Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math., 1999, 52(12): 1491-1552

[12]

Deift P. A., Zhou X.. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 1993, 137(2): 295-368

[13]

Flaschka H., Newell A. C.. Monodromy- and spectrum-preserving deformations. I.. Comm. Math. Phys., 1980, 76(1): 65-116

[14]

Fokas, A. S., Its, A. R., Kapaev, A. A. and Novokshenov, V. Y., Painlevé transcendents, the Riemann-Hilbert Approach, Mathematical Surveys and Monographs, 128, American Mathematical Society, Providence, RI, 2006.

[15]

Fokas A. S., Its A. R., Kitaev A. V.. The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys., 1992, 147(2): 395-430

[16]

Mezzadri F., Mo M. Y.. On an average over the Gaussian unitary ensemble. Int. Math. Res. Not. IMRN, 2009, 18: 3486-3515

[17]

Olver F. W. J.. Asymptotics and Special Functions, 1974, New York, London: Academic Press

[18]

Wang Z., Wong R.. Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl., 2006, 85(5): 698-718

[19]

Wong R., Zhang L.. Global asymptotics for polynomials orthogonal with exponential quartic weight. Asymptot. Anal., 2009, 64(3–4): 125-154

[20]

Wong R., Zhang L.. Global asymptotics of orthogonal polynomials associated with |x|2αe- Q(x). J. Approx. Theory, 2010, 162(4): 723-765

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/