Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data

Luca Dedè , Alfio Quarteroni

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 487 -512.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 487 -512. DOI: 10.1007/s11401-018-0079-3
Article

Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data

Author information +
History +
PDF

Abstract

The authors consider a phase field model for Darcy flows with discontinuous data in porous media; specifically, they adopt the Hele-Shaw-Cahn-Hillard equations of [Lee, Lowengrub, Goodman, Physics of Fluids, 2002] to model flows in the Hele-Shaw cell through a phase field formulation which incorporates discontinuities of physical data, namely density and viscosity, across interfaces. For the spatial approximation of the problem, the authors use NURBS—based isogeometric analysis in the framework of the Galerkin method, a computational framework which is particularly advantageous for the solution of high order partial differential equations and phase field problems which exhibit sharp but smooth interfaces. In this paper, the authors verify through numerical tests the sharp interface limit of the phase field model which in fact leads to an internal discontinuity interface problem; finally, they show the efficiency of isogeometric analysis for the numerical approximation of the model by solving a benchmark problem, the so-called “rising bubble” problem.

Keywords

Darcy flows / Phase field / Hele-Shaw cell / Cahn-Hilliard equation / Sharp interface limit / Isogeometric analysis

Cite this article

Download citation ▾
Luca Dedè, Alfio Quarteroni. Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data. Chinese Annals of Mathematics, Series B, 2018, 39(3): 487-512 DOI:10.1007/s11401-018-0079-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abels H., Garcke H., Grün G.. Thermodynamically consistent. frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Mathematical Models and Methods in Applied Sciences, 2012, 22(3): 1150013

[2]

Adams R. A.. Sobolev Spaces, 1975, New York: Academic Press

[3]

Barrett J. W., Blowey J. F., Garcke H.. Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM Journal on Numerical Analysis, 1999, 37(1): 286-318

[4]

Bartezzaghi A., Dedè L., Quarteroni A.. Isogeometric analysis of high order partial differential equations on surfaces. Computer Methods in Applied Mechanics and Engineering, 2015, 295(C): 446-469

[5]

Bear J.. Dynamics of Fluids in Porous Media, 1988, Mineola, NY: Dover Publications

[6]

Belytschko T., Moes N., Usui S., Parimi C.. Aribitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993-1013

[7]

Bosia S., Conti M., Grasselli M.. On the Cahn-Hilliard-Brinkman system. Communications in Mathematical Sciences, 2015, 13(6): 1541-1567

[8]

Caffarelli L. A., Muler N. E.. An L bound for solutions of the Cahn–Hilliard equation. Archive for Rational Mechanics and Analysis, 1995, 133(2): 457-487

[9]

Caginalp G.. Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Physical Review A, 1989, 39(11): 5587-5896

[10]

Cahn J. W.. On spinodal decomposition. Acta Metallica, 1961, 9(9): 795-801

[11]

Cahn J. W., Hilliard J. E.. Free energy of a nonuniform system. I, Interfacial free energy, Journal of Chemical Physics, 1958, 28(2): 258-267

[12]

Chung J., Hulbert G. M.. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 1993, 60(2): 371-375

[13]

Cottrell J. A., Hughes T. J. R., Bazilevs Y.. Isogeometric Analysis: Towards Integration of CAD and FEA, 2009, Cichester, UK: John Wiley and Sons

[14]

Cueto-Felgueroso, L. and Juanes, R., A phase-field model of unsaturated flow, Water Resources Research, 45, 2009, (https://doi.org/10.1029/2009WR007945.)

[15]

Dedè L., Borden M. J., Hughes T. J. R.. Isogeometric analysis for topology optimization problems in a phase field approach. Archives of Computational Methods in Engineering, 2012, 19(3): 427-465

[16]

Dedè L., Garcke H., Lam K. F.. A Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities. Journal of Mathematical Fluid Mechanics, 2017 1-37

[17]

Discacciati M., Quarteroni A., Quinodoz S.. Numerical approximation of internal discontinuity interface problems. SIAM Journal on Scientific Computing, 2013, 35(5): A2341-A2369

[18]

Elliott C. M., Garcke H.. On the Cahn-Hilliard equation with degenerate mobility. SIAM Journal on Mathematical Analysis, 1996, 27(2): 404-423

[19]

Fei M.. Global sharp interface limit of the Hele-Shaw-Cahn-Hilliard system. Mathematical Methods in the Applied Sciences, 2017, 40(3): 833-852

[20]

Feng X.. Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM Journal on Numerical Analysis, 2006, 44(3): 1049-1072

[21]

Feng X., Wise S. M.. Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation. SIAM Journal on Numerical Analysis, 2013, 50(3): 1320-1343

[22]

Feng X., Wu H.. A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and Hele-Shaw flow. Journal of Computational Mathematics, 2008, 26(6): 767-796

[23]

Fife P. C.. Models for phase separation and their mathematics. Electronic Journal of Differential Equations, 2000, 48: 1-26

[24]

Garcke, H. and Lam, K. F., Global weak solutions and asymptotic limits of a Cahn-Hilliard-Darcy system modelling tumour growth, AIMS Mathematics, 1, 2016, arXiv:1608.08758v2.

[25]

Gee M. W., Siefert C. M., Hu J. J. Ml 5.0 smoothed aggregation user’s guide, 2006, USA: Sandia National Laboratories

[26]

Glasner K.. A diffuse interface approach to Hele-Shaw flow. Nonlinearity, 2003, 16(1): 49-66

[27]

Gómez H., Calo V. M., Bazilevs Y., Hughes T. J. R.. Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49–50): 4333-4352

[28]

Gómez H., Hughes T. J. R.. Provably unconditionally stable. second-order time accurate, mixed variational methods for phase-field models, Journal of Computational Physics, 2011, 230(13): 5310-5327

[29]

Gómez H., Hughes T. J. R., Nogúeira X., Calo V. M.. Isogeometric analysis of the Navier-Stokes-Korteweg equations. Computer Methods in Applied Mechanics and Engineering, 2010, 199(25–28): 1828-1840

[30]

Gross S., Reusken A.. Numerical Methods for Two-Phase Incompressible Flows, 2011, Berlin: Springer-Verlag

[31]

Gurtin M. E., Polignone D., Vinals J.. Two-phase binary fluids and immiscible fluids described by an order parameter. Mathematical Models and Methods in Applied Sciences, 1996, 6(6): 815-831

[32]

Hele-Shaw H. S.. The flow of water. Nature (London), 1898, 58: 34-36

[33]

Hirt C. W., Nichols B. D.. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201-225

[34]

Hosseini B. S., Turek S., Moller M., Palmes C.. Isogeometric analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows. Journal of Computational Physics, 2017, 348(C): 171-194

[35]

Hughes T. J. R., Cottrell J. A., Bazilevs Y.. Isogeometric analysis: CAD. finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135-4195

[36]

Hysing S., Turek S., Kuzmin D. Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 2009, 60(11): 1259-1288

[37]

Jacqmin D.. Calculation of two-phase Navier-Stokes flows using phase-field modeling. Journal of Computational Physics, 1999, 155(1): 96-127

[38]

Jansen K. E., Whiting C. H., Hulbert G. M.. A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 190(3-4): 305-319

[39]

Lee H.-G., Lowengrub J. S., Goodman J.. Modeling pinchoff and reconnection in a Hele-Shaw cell. I, The models and their calibration, Physics of Fluids, 2002, 14(2): 492-513

[40]

Lee H.-G., Lowengrub J. S., Goodman J.. Modeling pinchoff and reconnection in a Hele-Shaw cell. II, Analysis and simulation in the nonlinear regime, Physics of Fluids, 2002, 14(2): 514-545

[41]

Liu J., Dedè L., Evans J. A. Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow. Journal of Computational Physics, 2013, 242: 321-350

[42]

Lowengrub J., Truskinovsky L.. Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proceedings of the Royal Society of London, A, 1998, 454(1978): 2617-2654

[43]

McLean J. W., Saffman P. G.. The effect of surface tension on the shape of fingers in a Hele Shaw cell. Journal of Fluid Mechanics, 1981, 102: 455-469

[44]

Osher S., Fedkiw R.. Level Set Methods and Dynamic Implicit Surfaces, 2003, New York: Springer-Verlag

[45]

Pego R. L.. Front migration in the nonlinear Cahn Hilliard equation. Proceedings of the Royal Society of London, A, 1989, 422(1863): 261-278

[46]

Piegl L., Tiller W.. The NURBS Book, 1997, New York: Springer-Verlag

[47]

Porta F. D., Grasselli M.. On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Communications on Pure and Applied Analysis, 2016, 15(2): 299-317

[48]

Saad Y.. Iterative Methods for Sparse Linear Systems, 2003, Philadelphia: SIAM

[49]

Saffman P. G., Taylor G. I.. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London, A, 1958, 45(1242): 312-329

[50]

Sethian J. A.. Level Set Methods and Fast Marching Methods, 1999, Cambridge: Cambridge University Press

[51]

Tagliabue A., Dedè L., Quarteroni A.. Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Computers & Fluids, 2014, 102(C): 277-303

[52]

Wang X., Wu H.. Long-time behavior for the Hele-Shaw-Cahn-Hilliard system. Asymptotic Analysis, 2012, 78(4): 217-245

[53]

Wang X., Zhang Z.. Well-posedness of the heleshawcahnhilliard system. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 2013, 30(3): 367-384

[54]

Wise S. M.. Unconditionally stable finite difference. nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, Journal of Scientific Computing, 2010, 44(1): 38-68

[55]

Wodo O., Ganapathysubramanian B.. Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes. mesh sensitivity analysis and the 3D isoperimetric problem, Journal of Computational Physics, 2011, 230(15): 6037-6060

[56]

Wooding R. A., Morel-Seytoux H. J.. Multiphase fluid flow through porous media. Annual Review of Fluid Mechanics, 1976, 8: 233-274

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/