Asymptotic Derivation of a Linear Plate Model for Soft Ferromagnetic Materials

Giuseppe Geymonat , Françoise Krasucki , Michele Serpilli

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 451 -460.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 451 -460. DOI: 10.1007/s11401-018-0077-5
Article

Asymptotic Derivation of a Linear Plate Model for Soft Ferromagnetic Materials

Author information +
History +
PDF

Abstract

The authors use the asymptotic expansion method by P. G. Ciarlet to obtain a Kirchhoff-Love-type plate model for a linear soft ferromagnetic material. They also give a mathematical justification of the obtained model by means of a strong convergence result.

Keywords

Asymptotic methods / Plates / Magnetoelasticity

Cite this article

Download citation ▾
Giuseppe Geymonat, Françoise Krasucki, Michele Serpilli. Asymptotic Derivation of a Linear Plate Model for Soft Ferromagnetic Materials. Chinese Annals of Mathematics, Series B, 2018, 39(3): 451-460 DOI:10.1007/s11401-018-0077-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown W. F. Jr Magnetoelastic Interactions, 1966, Berlin, Heidelberg, New York: Springer-Verlag

[2]

Ciarlet P. G.. Mathematical Elasticity, II, Theory of Plates, 1997, Amsterdam: North-Holland

[3]

Danas K., Triantafyllidis N.. Instability of a magnetoelastic layer resting on a non-magnetic substrate. J. Mech. Phys. Solids, 2014, 69: 67-83

[4]

Dorfmann A., Ogden R. W.. Nonlinear magnetoelastic deformations of elastomers. Acta Mechanica, 2004, 167: 13-28

[5]

Kankanala S. V., Triantafyllidis N.. Magnetoelastic buckling of a rectangular block in plane strain. J. Mech. Phys. Solids, 2008, 56: 1147-1169

[6]

Maugin G. A.. Continuum Mechanics of Electromagnetic Solids, 1988, Amsterdam: North-Holland

[7]

Maugin G. A., Eringen A. C.. Deformable magnetically saturated media I. Field equations, J. Math. Phys., 1972, 13: 143-155

[8]

Maugin G. A., Goudjo C.. The equations of soft ferro-magnetic elastic plates. Int. J. Solid Struct., 1982, 8: 889-912

[9]

Miya K., Hara K., Someya K.. Experimental and theoretical study on magnetoelastic buckling of a ferromagnetic cantilevered beam-plate. J. Appl. Mech., 1978, 45: 355-360

[10]

Moon E. C.. Magneto-Solid Mechanics, 1984, New York: Wiley

[11]

Nečas J.. Direct Methods in the Theory of Elliptic Equations, 2012, Berlin, Heidelberg: Springer-Verlag

[12]

Pao Y. H., Yeh C. S.. A linear theory for soft ferromagnetic elastic solids. Int. J. Engng., 1973, 11: 415-436

[13]

Tiersten H. F.. Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys., 1964, 5: 1298-1318

[14]

Truesdell, C. and Toupin, R., The Classical Field Theories, Handbuch der Physik, III/I, Principles of Classical Mechanics and Field Theories, Flügge, S. (ed.), Springer-Verlag, Berlin, 1960, 226–790.

[15]

Zhou Y. H., Zheng X. J.. A theoretical model of magnetoelastic buckling for soft ferromagnetic thin plates. Acta Mechanica Sinica (English edition), 1996, 12: 213-224

[16]

Zhou Y. H., Zheng X.. General expression of magnetic force for soft ferromagnetic plates in complex magnetic fields. Int. J. Engng., 1997, 35: 1405-1417

[17]

Zhou Y. H., Zheng X., Miya K.. Magnetoelastic bending and snapping of ferromagnetic plates in oblique magnetic fields. Fusion Engng. design, 1995, 30: 325-337

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/