Homogenization of Periodically Heterogeneous Thin Beams

Georges Griso , Bernadette Miara

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 397 -426.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (3) : 397 -426. DOI: 10.1007/s11401-018-0075-7
Article

Homogenization of Periodically Heterogeneous Thin Beams

Author information +
History +
PDF

Abstract

Consider an elastic thin three-dimensional body made of a periodic distribution of elastic inclusions. When both the thickness of the beam and the size of the heterogeneities tend simultaneously to zero the authors obtain three different one-dimensional models of beam depending upon the limit of the ratio of these two small parameters.

Keywords

Bernoulli-Navier model / Beam / Korn’s inequalities / Dimensional reduction / Homogenization

Cite this article

Download citation ▾
Georges Griso, Bernadette Miara. Homogenization of Periodically Heterogeneous Thin Beams. Chinese Annals of Mathematics, Series B, 2018, 39(3): 397-426 DOI:10.1007/s11401-018-0075-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bensoussan A., Lions J. L., Papanicolau G.. Asymptotic Analysis for Periodic Structures, 1978, Amsterdam: North-Holland

[2]

Caillerie D.. Thin elastic and periodic plates. Mathematical Methods in the Applied Sciences, 1984, 6(1): 159-191

[3]

Cioranescu D., Damlamian A., Griso G.. The periodic unfolding method in homogenization. SIAM J. Math. Anal., 2008, 40(4): 1585-1620

[4]

Cioranescu D., Damlamian A., Griso G.. The Periodic Unfolding Method for Partial Differential Equations, Contemporary Mathematics, 2018, Shanghai: Shanghai Scientific and Technical Publishers

[5]

Germain P.. Mécanique des Milieux Continus, 1962

[6]

Geymonat G., Krasucki F., Marigo J. J.. Sur la commutativité des passages à la limite en théorie asymptotique des poutres composites. Comptes Rendus de l’Académie des Sciences I, 1987, 305(2): 225-228

[7]

Griso G.. Asymptotic behaviour of curved rods by the unfolding method. Mathematical Methods in the Applied Sciences, 2004, 27(17): 2081-2110

[8]

Griso G.. Asymptotic behaviour of structures made of plates. Analysis and Applications, 2005, 3(4): 325-356

[9]

Griso G.. Asymptotic behavior of structures made of curved rods. Analysis and Applications, 2008, 6(1): 11-22

[10]

Griso G.. Decompositions of displacements of thin structures. JMPA, 2008, 89(2): 199-223

[11]

Sanchez-Hubert J., Sanchez-Palencia E.. Introduction aux Méthodes Asymptotiques et à l’Homogénéisation, 1992

[12]

Timoshenko S.. Strength of Materials, 1949, Toronto, New York, London: Van Nostrand

[13]

Trabucho L., Viano J. M.. Mathematical Modelling of Rods, Handbook of Numerical Analysis, 4, 1996, Amsterdam: North-Holland

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/