On Hopf Galois extension of separable algebras

Yu Lu , Shenglin Zhu

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 999 -1018.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 999 -1018. DOI: 10.1007/s11401-017-1108-3
Article

On Hopf Galois extension of separable algebras

Author information +
History +
PDF

Abstract

In this paper, the classical Galois theory to the H*-Galois case is developed. Let H be a semisimple and cosemisimple Hopf algebra over a field k, A a left H-module algebra, and A/A H a right H*-Galois extension. The authors prove that, if A H is a separable k-algebra, then for any right coideal subalgebra B of H, the B-invariants A B = {aA | b · a = ε(b)a, ∀bB} is a separable k-algebra. They also establish a Galois connection between right coideal subalgebras of H and separable subalgebras of A containing A H as in the classical case. The results are applied to the case H = (kG)* for a finite group G to get a Galois 1-1 correspondence.

Keywords

Semisimple Hopf algebra / Hopf Galois extension / Separable algebra / Galois connection

Cite this article

Download citation ▾
Yu Lu, Shenglin Zhu. On Hopf Galois extension of separable algebras. Chinese Annals of Mathematics, Series B, 2017, 38(4): 999-1018 DOI:10.1007/s11401-017-1108-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M., Goldman O.. The brauer group of a commutative ring. Trans. Amer. Math. Soc., 1960, 97: 367-409

[2]

Chase S. U., Harrison D. K., Rosenberg A.. Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc., 1965, 52: 15-33

[3]

Chase S. U., Sweedler M. E.. Hopf Algebras and Galois Theory, 1969, Berlin, Heidelberg: Springer-Verlag 52-83

[4]

Cohen M., Fishman D.. Hopf algebra actions. J. Algebra, 1986, 100: 363-379

[5]

Cohen M., Fishman D.. Semisimple extensions and elements of trace 1. J. Algebra, 1992, 149: 419-437

[6]

Davey B. A., Priestley H. A.. Introduction to Lattices and Order, 2002, Cambridge: Cambridge Univ. Press

[7]

DeMeyer F., Ingraham E.. Separable Algebras over Commutative Rings, 1971, Berlin: Springer-Verlag

[8]

Hirata K., Sugano K.. On semisimple extensions and separable extensions over non commutative rings. J. Math. Soc. Japan, 1966, 18(4): 360-373

[9]

Kreimer H. F., Takeuchi M.. Hopf algebras and Galois extensions of an algebra. Indiana Univ. Math. J., 1981, 30: 675-692

[10]

Kanzaki T.. On commutor ring and Galois theory of separable algebras. Osaka J. Math., 1964, 1: 103-115

[11]

Kanzaki T.. On Galois extension of rings. Nagoya Mathematical Journal, 1966 43-49

[12]

Masuoka A.. Freeness of Hopf algebra over coideal subalgebras. Comm. in Algebra, 1992, 20: 1353-1373

[13]

Montgomery S.. Hopf Algebras and Their Actions on Rings, 1993

[14]

Radford D. E.. The antipode of a finite-dimensional Hopf algebra over a field has finite order. Bull. Amer. Math. Soc., 1975, 81(6): 1103-1105

[15]

Schauenburg P., Schneider H.. On generalized Hopf Galois extensions. Journal of Pure and Applied Algebra, 2005, 202: 168-194

[16]

Skryabin S.. Projectivity and freeness over comodule algebras. Trans. Amer. Math. Soc., 2007, 359: 2597-2623

[17]

Sweedler M.. Integrals for Hopf algebras. Ann. of Math., Second Series, 1969, 89(2): 323-335

[18]

Wang C. H., Zhu S. L.. On smash products of transitive module algebras. Chin. Ann. Math. Ser. B, 2010, 31(4): 541-554

AI Summary AI Mindmap
PDF

434

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/