Geometry of the second-order tangent bundles of Riemannian manifolds

Aydin Gezer , Abdullah Magden

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 985 -998.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 985 -998. DOI: 10.1007/s11401-017-1107-4
Article

Geometry of the second-order tangent bundles of Riemannian manifolds

Author information +
History +
PDF

Abstract

Let (M, g) be an n-dimensional Riemannian manifold and T 2 M be its second-order tangent bundle equipped with a lift metric $\tilde g$. In this paper, first, the authors construct some Riemannian almost product structures on (T 2 M, $\tilde g$) and present some results concerning these structures. Then, they investigate the curvature properties of (T 2 M, $\tilde g$). Finally, they study the properties of two metric connections with nonvanishing torsion on (T 2 M, $\tilde g$): The H-lift of the Levi-Civita connection of g to T 2 M, and the product conjugate connection defined by the Levi-Civita connection of $\tilde g$ and an almost product structure.

Keywords

Almost product structure / Killing vector field / Metric connection / Riemannian metric / Second-order tangent bundle

Cite this article

Download citation ▾
Aydin Gezer, Abdullah Magden. Geometry of the second-order tangent bundles of Riemannian manifolds. Chinese Annals of Mathematics, Series B, 2017, 38(4): 985-998 DOI:10.1007/s11401-017-1107-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atanasiu Gh.. The Theory of Linear Connections in the Differential Geometry of Accelerations, 2007

[2]

Blaga A. M., Crasmareanu M.. The geometry of product conjugate connections. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 2013, 59(1): 73-84

[3]

Cartan E.. Sur les variétés à connexion affine et la théorie de la relativité généralisée. Ann. Sci. École Norm. Sup., 1923, 40(3): 325-412

[4]

de Leon M., Vazquez E.. On the geometry of the tangent bundle of order 2. An. Univ. Bucureşti Mat., 1985, 34: 40-48

[5]

Dida M. H., Hathout F., Djaa M.. On the geometry of the second order tangent bundle with the diagonal lift metric. Int. J. Math. Anal., 2009, 3(9–12): 443-456

[6]

Djaa M., Gancarzewicz J.. The geometry of tangent bundles of order r. Boletin Academia, Galega de Ciencias, 1985, 4: 147-165

[7]

Dodson C. T. J., Radivoiovici M. S.. Tangent and frame bundles of order two. Analele Stiintifice Ale Universitatii Al. I. Cuza, 1982, 28: 63-71

[8]

Garcia-Rio E., Vanhecke L., Vazquez-Abal M. E.. Harmonic endomorphism fields. Illinois J. Math., 1997, 41(1): 23-30

[9]

Hathout F., Dida H. M.. Diagonal lift in the tangent bundle of order two and its applications. Turkish J. Math., 2006, 30(4): 373-384

[10]

Ishikawa S.. On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds. Tensor (N.S.), 1980, 34(2): 173-178

[11]

Salimov A. A., Akbulut K., Aslanci S.. A note on integrability of almost product Riemannian structures. Arab. J. Sci. Eng. Sect. A Sci., 2009, 34(1): 153-157

[12]

Salimov A. A., Iscan M., Akbulut K.. Notes on para-Norden-Walker 4-manifolds. Int. J. Geom. Methods Mod. Phys., 2010, 7(8): 1331-1347

[13]

Staikova M. T., Gribachev K. I.. Canonical connections and their conformal invariants on Riemannian almost-product manifolds. Serdica, 1992, 18(3–4): 150-161

[14]

Tachibana S.. Analytic tensor and its generalization. Tohoku Math. J., 1960, 12(2): 208-221

[15]

Yano K., Ako M.. On certain operators associated with tensor field. Kodai Math. Sem. Rep., 1968, 20: 414-436

[16]

Yano K., Ishihara S.. Tangent and Cotangent Bundles: Differential Geometry, Pure and Applied Mathematics, 1973, New York: Marcel Dekker, Inc.

AI Summary AI Mindmap
PDF

464

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/