Nonabelian gauged linear sigma model

Yongbin Ruan

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 963 -984.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 963 -984. DOI: 10.1007/s11401-017-1106-5
Article

Nonabelian gauged linear sigma model

Author information +
History +
PDF

Abstract

The gauged linear sigma model (GLSM for short) is a 2d quantum field theory introduced by Witten twenty years ago. Since then, it has been investigated extensively in physics by Hori and others. Recently, an algebro-geometric theory (for both abelian and nonabelian GLSMs) was developed by the author and his collaborators so that he can start to rigorously compute its invariants and check against physical predications. The abelian GLSM was relatively better understood and is the focus of current mathematical investigation. In this article, the author would like to look over the horizon and consider the nonabelian GLSM. The nonabelian case possesses some new features unavailable to the abelian GLSM. To aid the future mathematical development, the author surveys some of the key problems inspired by physics in the nonabelian GLSM.

Keywords

GIT quotient / Stability condition / GLSM

Cite this article

Download citation ▾
Yongbin Ruan. Nonabelian gauged linear sigma model. Chinese Annals of Mathematics, Series B, 2017, 38(4): 963-984 DOI:10.1007/s11401-017-1106-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adem A., Leida J., Ruan Y.. Orbifolds and Stringy Topology, 2007

[2]

Benini, F., Park, D. and Zhao, P., Cluster algebra from dualities of 2d N = (2; 2) quiver gauge theories, arXiv:1406.2699.

[3]

Chang, H.-L. and Li, J., Gromov-Witten invariants of stable maps with fields, International Mathematics Research Notices, RNR, 186, arXiv:math/1101.0914.

[4]

Chang H.-L., Li J., Li W.. Witten’s top Chern class via cosection localization. Invent. Math., 2013

[5]

Chang H.-L., Li J., Li W., Liu C.-C.. Mixed-spin-p-fields of Fermat quintic polynomials, 2015

[6]

Cheong D., Ciocan-Fontanine I., Kim B.. Orbifold Quasimap Theory, 2014

[7]

Choi J., Kiem Y.-H.. Landau-Ginzburg/Calabi-Yau correspondence via quasi-maps, 2015

[8]

Ciocan-Fontanine I., Kim B.. Moduli stacks of stable toric quasimaps. Adv. Math., 2010, 225(6): 3022-3051

[9]

Ciocan-Fontanine I., Kim B., Maulik D.. Stable quasimaps to GIT quotients. J. Geom. Phys., 2014, 75: 17-47

[10]

Clader, E., Janda, F. and Ruan, Y., Higher-genus quasimap wall-crossing via localization, arXiv:1702.03427.

[11]

Clader, E. and Ross, D., Sigma Models and Phase Transitions for Complete Intersections, arXiv:1511.02027.

[12]

Clader, E. and Ruan, Y., Mirror symmetry construction, arXiv:1412.1268.

[13]

Fan H., Jarvis T. J., Ruan Y.. The Witten equation and its virtual fundamental cycle, 2007

[14]

Fan H., Jarvis T. J., Ruan Y.. Geometry and analysis of spin equations. Comm. Pure Appl. Math., 2008, 61(6): 745-788

[15]

Fan H., Jarvis T. J., Ruan Y.. The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math., 2013, 178: 1-106

[16]

Fan H., Jarvis T. J., Ruan Y.. A mathematical theory of gauged linear sigma model. Ann. Math., 2013, 178(1): 1-106

[17]

Fan H., Jarvis T. J., Ruan Y.. Analytic Theory of the Gauged Linear Sigma Model. Comm. Pure Appl. Math., 2008, 61(6): 745-788

[18]

Fan H., Jarvis T. J., Ruan Y.. The moduli space in the gauged linear sigma model, 2016

[19]

Fulton W.. Intersection Theory, 1984

[20]

Givental A., Kim B.. Quantum cohomology of flag manifolds and toda lattices. Comm. Math. Phys., 1995, 168: 609-641

[21]

Hori K.. Duality in two-dimensional (2,2) supersymmetric non-abelian gauge theories. JHEP, 2013, 1310: 121

[22]

Hori, K. and Knapp, J., Linear Sigma models with strongly coupled phases-one parameter models, arXiv: 1308.6265.

[23]

Hori K., Tong D.. Aspects of non-abelian gauge dynamics in two-dimensional N = (2, 2) theories (electronic). J. High Energy Phys., 2007, 5(079): 41

[24]

Hosono, S. and Takagi, H., Mirror symmetry and projective geometry of Reye Congruences I, arXiv: 1101.2746.

[25]

Kiem Y.-H., Li J.. Localizing Virtual Cycles by Cosections. J. Amer. Math. Soc., 2013, 26(4): 1025-1050

[26]

Kim B.. Stable quasimaps, 2011

[27]

Marian A., Oprea D., Pandharipande R.. The moduli space of stable quotients. Geom. Topol., 2011, 15(3): 1651-1706

[28]

Pech, C. and Rietsch, K., A Landau-Ginzburg model for Lagrangian Grassmannians, Langlands duality and relations in quantum cohomology, arXiv:1306.4016.

[29]

Polishchuk A., Vaintrob A.. Matrix factorizations and cohomological field theories. J. Reine Angew. Math., 2014 128

[30]

Rietsch K.. A mirror symmetric construction of qH T*(G/P)(q), 2007

[31]

Ross D., Ruan Y.. Wall-Crossing in Genus Zero Landau-Ginzburg Theory, 2014

[32]

Rødland E. A.. The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2, 7). Compositio Math., 2000, 122(2): 135-149

[33]

Tian, G. and Xu, G., Analysis of gauged Witten equation, arXiv:1405.6352.

[34]

Witten E.. Phases of N = 2 theories in two dimensions, Mirror symmetry, 1997 143-211

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/