Cluster partition function and invariants of 3-manifolds

Mauricio Romo

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 937 -962.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 937 -962. DOI: 10.1007/s11401-017-1105-6
Article

Cluster partition function and invariants of 3-manifolds

Author information +
History +
PDF

Abstract

The author reviews some recent developments in Chern-Simons theory on a hyperbolic 3-manifold M with complex gauge group G. The author focuses on the case of G = SL(N, C) and M being a knot complement: M = S 3 \ K. The main result presented in this note is the cluster partition function, a computational tool that uses cluster algebra techniques to evaluate the Chern-Simons path integral for G = SL(N, C). He also reviews various applications and open questions regarding the cluster partition function and some of its relation with string theory.

Keywords

Chern-Simons theory / Knots / Cluster algebras

Cite this article

Download citation ▾
Mauricio Romo. Cluster partition function and invariants of 3-manifolds. Chinese Annals of Mathematics, Series B, 2017, 38(4): 937-962 DOI:10.1007/s11401-017-1105-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dimofte T.. 3d superconformal theories from three-manifolds, New Dualities of Supersymmetric Gauge Theories, 2016 339-373

[2]

Teschner J.. Exact results on N = 2 supersymmetric gauge theories. New Dualities of Supersymmetric Gauge Theories, 2016 28 1-30

[3]

Gang D. M., Kim N., Romo M., Yamazaki M.. Aspects of defects in 3d-3d correspondence. Comm. Anal. Geom., 2015

[4]

Witten E.. Quantum field theory and the Jones polynomial. Commun. Math. Phys., 1989, 121: 351

[5]

Witten E.. Quantization of Chern-Simons gauge theory with complex gauge group. Commun. Math. Phys., 1991, 137: 29-66

[6]

Gukov S.. Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys., 2005, 255: 577-627

[7]

Witten E.. Analytic continuation of Chern-Simons theory, 2010

[8]

Axelrod S., Della Pietra S., Witten E.. Geometric quantization of Chern-Simons gauge theory. J. Diff. Geom., 1991, 33(3): 787-902

[9]

Elitzur S., Moore G. W., Schwimmer A., Seiberg N.. Remarks on the canonical quantization of the Chern-Simons-Witten theory. Nucl. Phys. Ser. B., 1989, 326: 108

[10]

Terashima Y., Yamazaki M.. 3d N = 2 theories from cluster algebras. PTEP, 2014, 023: B01

[11]

Kashaev R. M., Nakanishi T.. Classical and quantum dilogarithm identities. SIGMA, 2011, 7: 102

[12]

Beasley C.. Localization for Wilson loops in Chern-Simons theory. Adv. Theor. Math. Phys., 2013, 17: 1-240

[13]

Bar-Natan D.. On the vassiliev knot invariants. Topology, 1995, 34: 423

[14]

Woodhouse N. M. J.. Geometric Quantization, 1992

[15]

Dimofte T., Gabella M., Goncharov A. B.. K-decompositions and 3d gauge theories, 2013

[16]

Dimofte T., Gukov S., Lenells J., Zagier D.. Exact results for perturbative Chern-Simons theory with complex gauge group. Commun. Num. Theor. Phys., 2009, 3: 363-443

[17]

Hitchin N. J.. The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 1987, 55(1): 59-126

[18]

Cooper D., Culler M., Gillet H. Plane curves associated to character varieties of 3-manifolds. Invent. Math., 1994, 118(1): 47-84

[19]

Freed D. S.. Remarks on Chern-Simons theory, 2008

[20]

Dimofte T. D., Garoufalidis S.. The quantum content of the gluing equations. Geometry and Topology, 2013, 17(3): 1253-1315

[21]

Dimofte T., Garoufalidis S.. Quantum modularity and complex Chern-Simons theory, 2015

[22]

Kashaev R. M.. The hyperbolic volume of knots from quantum dilogarithm, 1996

[23]

Murakami H., Murakami J.. The colored Jones polynomials and the simplicial volume of a knot. Acta Math., 2001, 186(1): 85-104

[24]

Murakami H., Murakami J., Okamoto M. Kashaev’s conjecture and the Chern-Simons invariants of knots and links. Experimental Mathematics, 2002, 11(3): 427-435

[25]

Dimofte, T. and Gukov, S., Quantum field theory and the volume conjecture, arXiv: 1003.4808.

[26]

Dijkgraaf R., Fuji H., Manabe M.. The volume conjecture, perturbative knot invariants, and recursion relations for topological strings. Nucl. Phys. Ser. B, 2011, 849: 166-211

[27]

Borot G., Eynard B.. All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, 2012

[28]

Dimofte T.. Quantum Riemann surfaces in Chern-Simons theory. Adv. Theor. Math. Phys., 2013, 17: 479-599

[29]

Hikami K.. Hyperbolic structure arising from a knot invariant. Internat. J. Modern Phys. A, 2001, 16(19): 3309-3333

[30]

Hikami K.. Hyperbolic structure arising from a knot invariant. II. Completeness. Internat. J. Modern Phys. B, 2002, 16(14–15): 1963-1970

[31]

Hikami K.. Generalized volume conjecture and the A-polynomials: The Neumann Zagier potential function as a classical limit of the partition function. Journal of Geometry and Physics, 2007, 57: 1895-1940

[32]

Ellegaard Andersen J., Kashaev R.. A TQFT from quantum Teichmüller theory. Commun. Math. Phys., 2014, 330: 887-934

[33]

Dimofte T., Gaiotto D., Gukov S.. 3-manifolds and 3d indices, 2011

[34]

Dimofte T.. Complex Chern-Simons theory at level k via the 3d-3d correspondence, 2014

[35]

Ellegaard Andersen, J. and Kashaev, R., Complex quantum Chern-Simons, arXiv: 1409.1208.

[36]

Fock V., Goncharov A.. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci., 2006, 103: 1-211

[37]

Coman I., Gabella M., Teschner J.. Line operators in theories of class S, quantized moduli space of flat connections, and Toda field theory, 2015

[38]

Fomin S., Zelevinsky A.. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 2002, 15(2): 497-529

[39]

Cordova C., Jafferis D. L.. Complex Chern-Simons from M5-branes on the squashed three-sphere, 2013

[40]

Hama N., Hosomichi K., Lee S.. SUSY gauge theories on squashed three-spheres, 2011

[41]

Imamura Y., Yokoyama D.. N = 2 supersymmetric theories on squashed three-sphere. Phys. Rev., 2012, D85: 025015

[42]

Guéritaud F.. On canonical triangulations of once-punctured torus bundles and two-bridge link complements. Geom. Topol., 2006, 10: 1239-1284

[43]

Gang D. M., Koh E., Lee S. M., Park J.. Superconformal index and 3d-3d correspondence for mapping Cylinder/Torus, 2013

[44]

Polyak M.. Feynman diagrams for pedestrians and mathematicians. Graphs and Patterns in Mathematics and Theoretical Physics, 2005, 73: 15-42

[45]

Kitayama T., Terashima Y.. Torsion functions on moduli spaces in view of the cluster algebra. Geometriae Dedicata, 2015, 175(1): 125-143

[46]

Lee S., Yamazaki M.. 3d Chern-Simons theory from M5-branes, 2013

[47]

Chung H.-J., Dimofte T., Gukov S., Sulkowski P.. 3d-3d correspondence revisited, 2014

[48]

Falbel, E., Guilloux, A., Koseleff, P.-V., et al., Character varieties for SL(3, C): The figure eight knot, arXiv: 1412.4711.

[49]

Heusener, M., Munoz, V. and Porti, J., The SL(3, C)-character variety of the figure eight knot, arXiv: 1505.04451.

[50]

Gaiotto D., Witten E.. S-Duality of boundary conditions in N = 4 super Yang-Mills theory. Adv. Theor. Math. Phys., 2009, 13: 721

[51]

Xie D.. Network, Cluster coordinates and N=2 theory I, 2012

[52]

Faddeev L. D., Kashaev R. M.. Quantum dilogarithm. Modern Phys. Lett. A, 1994, 9(5): 427-434

[53]

Faddeev L. D.. Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys., 1995, 34(3): 249-254

[54]

Faddeev L.. Modular double of a quantum group, Conférence Moshé Flato 1999, 2000

[55]

Faddeev L. D., Kashaev R. M., Volkov A. Y.. Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality. Commun. Math. Phys., 2001, 219: 199-219

[56]

Gang D. M., Kim N., Romo M., Yamazaki M.. Taming supersymmetric defects in 3d-3d correspondence, 2015

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/