The moduli space in the gauged linear sigma model

Huijun Fan , Tyler Jarvis , Yongbin Ruan

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 913 -936.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 913 -936. DOI: 10.1007/s11401-017-1104-7
Article

The moduli space in the gauged linear sigma model

Author information +
History +
PDF

Abstract

This is a survey article for the mathematical theory of Witten’s Gauged Linear Sigma Model, as developed recently by the authors. Instead of developing the theory in the most general setting, in this paper the authors focus on the description of the moduli.

Keywords

Landau-Ginzburg / Calabi-Yau / Gromov-Witten / GLSM / Moduli / Phase / Variation of geometric invariant theory / Symplectic reduction

Cite this article

Download citation ▾
Huijun Fan, Tyler Jarvis, Yongbin Ruan. The moduli space in the gauged linear sigma model. Chinese Annals of Mathematics, Series B, 2017, 38(4): 913-936 DOI:10.1007/s11401-017-1104-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramovich D., Jarvis T. J.. Moduli of twisted spin curves (electronic). Proc. Amer. Math. Soc., 2003, 131(3): 685-699

[2]

Addington N., Donovan W., Segal E.. The Pfaffian-Grassmannian equivalence revisited, 2014

[3]

Chang H.-L., Li J.. Gromov-Witten invariants of stable maps with fields, International Mathematics Research Notices. RNR, 2012, 18: 4163-4217

[4]

Chang H.-L., Li J., Li W.. Witten’s top Chern class via cosection localization. Invent. Math., 2013

[5]

Chang H.-L., Li J., Li W., Liu C.-C.. Mixed-spin-p-fields of Fermat quintic polynomials, 2015

[6]

Cheong D., Ciocan-Fontanine I., Kim B.. Orbifold Quasimap Theory, 2014

[7]

Chiodo A., Iritani H., Ruan Y.. Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes Études Sci., 2014, 119: 127-216

[8]

Chiodo A., Ruan Y.. Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math., 2010, 182(1): 117-165

[9]

Chiodo A., Ruan Y.. LG/CY correspondence: The state space isomorphism. Adv. Math., 2011, 227(6): 2157-2188

[10]

Ciocan-Fontanine I., Kim B.. Moduli stacks of stable toric quasimaps. Adv. Math., 2010, 225(6): 3022-3051

[11]

Ciocan-Fontanine I., Kim B., Maulik D.. Stable quasimaps to GIT quotients. J. Geom. Phys., 2014, 75: 17-47

[12]

Choi J., Kiem Y.-H.. Landau-Ginzburg/Calabi-Yau correspondence via quasi-maps, 2016

[13]

Clader E.. Landau-Ginzburg/Calabi-Yau correspondence for the complete intersections X_{3, 3} and X_{2, 2, 2, 2}, 2013

[14]

Clader E., Janda F., Ruan Y.. Higher-genus quasimap wall-crossing via localization, 2017

[15]

Dolgachev I. V., Hu Y.. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., 1998, 87: 5-56

[16]

Fan H., Jarvis T. J., Ruan Y.. The Witten equation and its virtual fundamental cycle, 2007

[17]

Fan H., Jarvis T. J., Ruan Y.. Geometry and analysis of spin equations. Comm. Pure Appl. Math., 2008, 61(6): 745-788

[18]

Fan H., Jarvis T. J., Ruan Y.. The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math., 2013, 178: 1-106

[19]

Fan H., Jarvis T. J., Ruan Y.. A mathematical theory of the Gauged Linear Sigma Model, 2015

[20]

Fan H., Jarvis T. J., Ruan Y.. Analytic Theory of the Gauged Linear Sigma Model, 2017

[21]

Hori K., Tong D.. Aspects of non-abelian gauge dynamics in two-dimensional N = (2, 2) theories (electronic). J. High Energy Phys., 2007, 5: 079

[22]

Hosono S., Konishi Y.. Higher genus Gromov-Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau 3-folds. Adv. Theor. Math. Phys., 2009, 13(2): 463-495

[23]

Jarvis T., Kimura T., Vaintrob A.. Moduli spaces of higher spin curves and integrable hierarchies. Compositio Math., 2001, 126: 157-212

[24]

Kim B.. Stable quasimaps, 2011

[25]

Kuznetsov A.. Lefschetz decompositions and categorical resolutions of singularities. Selecta Math. (N. S.), 2008, 13(4): 661-696

[26]

Lee Y., Priddis N., Shoemaker M.. A Proof of the Landau-Ginzburg/Calabi-Yau Correspondence via the Crepant Transformation Conjecture, 2014

[27]

Mumford D., Fogarty J., Kirwan F.. Geometric Invariant Theory, 1994 3

[28]

Priddis N., Shoemaker M.. A Landau-Ginzburg/Calabi-Yau correspondence for the mirror quintic, 2013

[29]

Ross D., Ruan Y.. Wall-crossing in genus zero Landau-Ginzburg theory, 2014

[30]

Ruan Y.. The Witten equation and the geometry of the Landau-Ginzburg model. Pro. Symposia in Pure Math., 2012, 85: 209-240

[31]

Rødland E. A.. The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2; 7). Compositio Math., 2000, 122(2): 135-149

[32]

Thaddeus M.. Geometric invariant theory and flips. J. Amer. Math. Soc., 1996, 9(3): 691-723

[33]

Vafa C., Warner N.. Catastrophes and the classification of conformal theories. Physics Letters B, 1989, 218: 51-58

[34]

Witten E.. The N-matrix model and gauged WZW models. Nuclear Physics B, 1992, 371: 191-245

[35]

Witten E.. Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity, Topological Methods in Modern Mathematics, 1993 235-269

[36]

Witten E.. Phases of N = 2 Theories in Two Dimensions. Mirror Symmetry, II, Volume 1 of AMS/IP Stud. Adv. Math., 1997 143-211

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/