Beijing lectures on the grade restriction rule

Richard Eager , Kentaro Hori , Johanna Knapp , Mauricio Romo

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 901 -912.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 901 -912. DOI: 10.1007/s11401-017-1103-8
Article

Beijing lectures on the grade restriction rule

Author information +
History +
PDF

Abstract

The authors describe the relationships between categories of B-branes in different phases of the non-Abelian gauged linear sigma model. The relationship is described explicitly for the model proposed by Hori and Tong with non-Abelian gauge group that connects two non-birational Calabi-Yau varieties studied by Rødland. A grade restriction rule for this model is derived using the hemisphere partition function and it is used to map B-type D-branes between the two Calabi-Yau varieties.

Keywords

Gauged linear sigma model / Non-birational Calabi-Yau manifolds / D-branes / Equivalences of categories

Cite this article

Download citation ▾
Richard Eager, Kentaro Hori, Johanna Knapp, Mauricio Romo. Beijing lectures on the grade restriction rule. Chinese Annals of Mathematics, Series B, 2017, 38(4): 901-912 DOI:10.1007/s11401-017-1103-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hori K., Tong D.. Aspects of non-Abelian gauge dynamics in two-dimensional N = (2; 2) theories. JHEP, 2007, 0705: 079

[2]

Borisov, L. and Caldararu, A., The Pfaffian-Grassmannian derived equivalence, arXiv: math/0608404.

[3]

Rødland E. A.. The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2; 7). Compositio Math., 2000, 122(2): 135-149

[4]

Kuznetsov, A., Homological projective duality for Grassmannians of lines, arXiv: math/0610957.

[5]

Addington N., Donovan W., Segal E.. The Pfaffian-Grassmannian equivalence revisited. Algebr. Geom., 2015, 2(3): 332-364

[6]

Herbst, M., Hori, K. and Page, D., Phases of N=2 theories in 1+1 dimensions with boundary, arXiv: 0803. 2045 [hep-th].

[7]

Eager, R., Hori, K., Knapp, J. and Romo, M., to appear.

[8]

Witten E.. Phases of N = 2 theories in two-dimensions. Nucl. Phys. B, 1993, 403: 159

[9]

Aspinwall P. S., Greene B. R., Morrison D. R.. Measuring small distances in N = 2 sigma models. Nucl. Phys. B, 1994, 420: 184

[10]

Gel′fand I. M., Kapranov M. M., Zelevinsky A. V.. Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications, 1994

[11]

Kawamata, Y., Log crepant birational maps and deived categories, arXiv: math.AG/0311139.

[12]

van den Bergh M.. Non-commutative Crepant Resolutions. The Legacy of Niels Henrik Abel, 2004, Berlin: Springer-Verlag 749-770

[13]

Segal E.. Equivalences between GIT quotients of Landau-Ginzburg B-models. Commun. Math. Phys., 2011, 304: 411-432

[14]

Halpern-Leistner, D., The derived category of a GIT quotient, arXiv: 1203.0276 [math.AG].

[15]

Ballard, M., Favero, D. and Katzarkov, L., Variation of geometric invariant theory quotients and derived categories, arXiv: 1203.6643 [math.AG].

[16]

Hori, K. and Romo, M., Exact results in two-dimensional (2, 2) supersymmetric gauge theories with boundary, arXiv: 1308.2438 [hep-th].

[17]

Sugishita S., Terashima S.. Exact results in supersymmetric field theories on manifolds with boundaries. JHEP, 2013

[18]

Honda D., Okuda T.. Exact results for boundaries and domain walls in 2d supersymmetric theories. JHEP, 2015

[19]

Bondal A., Orlov D.. Reconstruction of a variety from the derived category and groups of autoequivalences. Compositio Math., 2001, 125(3): 327-344

[20]

Hosono, S. and Takagi, H., Mirror symmetry and projective geometry of Fourier-Mukai partners, arXiv: 1410.1254 [math.AG].

[21]

Hosono, S. and Takagi, H., Double quintic symmetroids, Reye congruences, and their derived equivalence, arXiv: 1302.5883 [math.AG].

[22]

Miura, M., Minuscule Schubert varieties and mirror symmetry, arXiv: 1301.7632 [math.AG].

[23]

Galkin S.. Explicit Construction of Miura’s Varieties, 2014

[24]

Gerhardus, A. and Jockers, H., Dual pairs of gauged linear sigma models and derived equivalences of Calabi-Yau threefolds, arXiv: 1505.00099 [hep-th].

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/