Landau-Ginzburg/Calabi-Yau correspondence via wall-crossing

Jinwon Choi , Young-Hoon Kiem

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 883 -900.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 883 -900. DOI: 10.1007/s11401-017-1102-9
Article

Landau-Ginzburg/Calabi-Yau correspondence via wall-crossing

Author information +
History +
PDF

Abstract

Landau-Ginzburg/Calabi-Yau correspondence claims the equivalence between the Gromov-Witten theory and the Fan-Jarvis-Ruan-Witten theory. The authors survey recently developed wall-crossing approach to the Landau-Ginzburg/Calabi-Yau correspondence for a quintic threefold.

Keywords

Gromov-Witten invariant / Fan-Jarvis-Ruan-Witten invariant / Moduli space / Quasimap / Wall-crossing

Cite this article

Download citation ▾
Jinwon Choi, Young-Hoon Kiem. Landau-Ginzburg/Calabi-Yau correspondence via wall-crossing. Chinese Annals of Mathematics, Series B, 2017, 38(4): 883-900 DOI:10.1007/s11401-017-1102-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrend K., Fantechi B.. The intrinsic normal cone. Invent. Math., 1997, 129(1): 45-88

[2]

Chang, H.-L., Kiem, Y.-H. and Li, J., Torus localization and wall crossing formulas for cosection localized virtual cycles, arXiv: 1502.00078.

[3]

Chang H.-L., Li J.. Gromov-Witten invariants of stable maps with fields. Int. Math. Res. Notices, 2012, 18: 4163-4217

[4]

Chang H.-L., Li J., Li W.-P.. Wittens top Chern class via cosection localization. Invent. Math., 2015, 200(3): 1015-1063

[5]

Cheong D., Ciocan-Fontanine I., Kim B.. Orbifold quasimap theory. Math. Ann., 2015, 363(3): 777-816

[6]

Chiodo A.. Stable twisted curves and their r-spin structures. Ann. Inst. Fourier, 2008, 58(5): 1635-1689

[7]

Chiodo A., Ruan Y.. Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math., 2010, 182(1): 117-165

[8]

Choi, J. and Kiem, Y.-H., Landau-Ginzburg/Calabi-Yau correspondence via quasi-maps, I, arXiv: 1103. 0833.

[9]

Ciocan-Fontanine, I. and Kim, B., Wall-crossing in genus zero quasimap theory and mirror maps, arXiv: 1304.7056.

[10]

Ciocan-Fontanine, I. and Kim, B., Higher genus quasimap wall-crossing for semi-positive targets, arXiv: 1308.6377.

[11]

Ciocan-Fontanine I., Kim B., Maulik D.. Stable quasimaps to GIT quotients. J. Geom. and Phys., 2014, 75: 17-47

[12]

Clader, E., Landau-Ginzburg/Calabi-Yau correspondence for the complete intersections X 3,3 and X 2,2,2,2, arXiv: 1301.5530.

[13]

Cotterill E.. Rational curves of degree 10 on a general quintic threefold. Comm. Alg., 2005, 33(6): 1833-1872

[14]

Cotterill E.. Rational curves of degree 11 on a general quintic 3-fold. Quart. J. Math., 2012, 63(3): 539-568

[15]

Cox D., Katz S.. Mirror symmetry and algebraic geometry. Mathematical surveys and monographs, 1999

[16]

Faltings G.. Moduli-stacks for bundles on semistable curves. Math. Ann., 1996, 304: 489-515

[17]

Fan H., Jarvis T., Ruan Y.. The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math., 2013, 178: 1-106

[18]

Fan, H., Jarvis, T. and Ruan, Y., A mathematical theory of the gauged linear sigma model, arXiv: 1506.02109.

[19]

Fulton W.. Intersection Theory, 1998 second

[20]

Fulton W., MacPherson R.. A compactification of configuration spaces. Ann. Math., 1994, 139(1): 183-225

[21]

Hori K., Katz S., Klemm A., Pandharipande R. Mirror Symmetry, 2003

[22]

Jarvis T., Kimura T., Vaintrob A.. Moduli spaces of higher spin curves and integrable hierarchies. Comp. Math., 2001, 126: 157-212

[23]

Johnsen T., Kleiman S.. Rational curves of degree at most 9 on a general quintic threefold. Comm. Alg., 1996, 24: 2721-2753

[24]

Katz S.. On the finiteness of rational curves on quintic threefolds. Comp. Math., 1986, 60: 151-162

[25]

Kiem Y.-H., Li J.. Localizing virtual cycles by cosections. J. Amer. Math. Soc., 2013, 26: 1025-1050

[26]

Le Potier J.. Systèmes cohérents et structures de niveau, 1993

[27]

Li J., Tian G.. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 1998, 11: 119-174

[28]

Marian, A., Oprea D. and Pandharipande, R., The moduli space of stable quotients. arXiv: 0904.2992.

[29]

Ross D., Ruan Y.. Wall-crossing in genus zero Landau-Ginzburg theory. J. Reine Angew. Math., 2015

[30]

Toda Y.. Moduli spaces of stable quotients and wall crossing phenomena. Comp. Math., 2011, 147: 1479-1518

[31]

Vafa C., Warner N.. Catastrophes and the classification of conformal field theories. Phys. Lett. B, 1989, 218(1): 51-58

[32]

Vainsencher I.. Enumeration of n-fold tangent hyperplanes to a surface. J. Algebraic Geom., 1995, 4: 503-526

[33]

Witten E.. Phases of N = 2 theories in two dimensions. Nucl. Phys. B, 1993, 403: 159-222

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/