A survey on mixed spin P-fields

Huai-Liang Chang , Jun Li , Wei-Ping Li , Chiu-Chu Melissa Liu

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 869 -882.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (4) : 869 -882. DOI: 10.1007/s11401-017-1101-x
Article

A survey on mixed spin P-fields

Author information +
History +
PDF

Abstract

The mixed spin P-fields (MSP for short) theory sets up a geometric platform to relate Gromov-Witten invariants of the quintic three-fold and Fan-Jarvis-Ruan-Witten invariants of the quintic polynomial in five variables. It starts with Wittens vision and the P-fields treatment of GW invariants and FJRW invariants. Then it brie y discusses the master space technique and its application to the set-up of the MSP moduli. Some key results in MSP theory are explained and some examples are provided.

Keywords

Mixed Spin P-fields / GW invariants / FJRW invariants / P-fields / Cosection localization

Cite this article

Download citation ▾
Huai-Liang Chang, Jun Li, Wei-Ping Li, Chiu-Chu Melissa Liu. A survey on mixed spin P-fields. Chinese Annals of Mathematics, Series B, 2017, 38(4): 869-882 DOI:10.1007/s11401-017-1101-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behrend K., Fantechi B.. The intrinsic normal cone. Invent. Math., 1997, 128(1): 45-88

[2]

Bershadsky M., Cecotti S., Ooguri H., Vafa C.. Holomorphic Anomalies in Topological Field Theories. Nucl. Phys. B, 1993, 405: 279-304

[3]

Candelas P., de la Ossa X., Green P., Parkes L.. A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B, 1991, 359: 21-74

[4]

Chang, H.-L., Kiem, Y. H. and Li, J., Torus localization and wall crossing for cosection localized virtual cycles, math. AG. arXiv:1502.00078.

[5]

Chang H.-L., Li J.. Gromov-Witten invariants of stable maps with fields. Int. Math. Res. Not., 2012, 2012(18): 4163-4217

[6]

Chang H.-L., Li J., Li W.-P.. Witten’s top Chern classes via cosection localization. Inventiones Mathematicae, 2015, 200(3): 1015-1063

[7]

Chang, H.-L., Li, J., Li, W.-P. and Melissa Liu, C.-C., Mixed-Spin-P fields of Fermat quintic polynomials, math. AG. arXiv:1505.07532.

[8]

Chang, H.-L., Li, J., Li, W.-P. and Melissa Liu, C.-C., Toward an effective theory of GW invariants of quintic three-folds, in preprint.

[9]

Chang, H.-L., Li, J., Li, W.-P. and Melissa Liu, C.-C., Dual twisted FJRW invariants of quintic singularity via floating MSP fields, in preparation.

[10]

Chiodo A.. Towards an enumerative geometry of the moduli space of twisted curves and r-th roots. Compos. Math., 2008, 144(6): 1461-1496

[11]

Choi, J.-W. and Kiem, Y.-H., Landau-Ginzburg/Calabi-Yau correspondence via quasi-maps, I, arXiv: 1103.0833v5.

[12]

Fan H.-J., Jarvis T. J., Ruan Y.-B.. The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2), 2013, 178(1): 1-106

[13]

Fan, H.-J., Jarvis, T. J. and Ruan, Y.-B., The Witten equation and its virtual fundamental cycle, math. AG. arXiv:0712.4025.

[14]

Fan, H.-J., Jarvis, T. J. and Ruan, Y.-B., A mathematical theory of the gauged linear sigma model, math. AG. arXiv:1506.02109.

[15]

Gathmnn A.. Absolute and relative Gromov-Witten invariants of very ample hypersurfaces. Duke, 2002, 115(2): 171-203

[16]

Givental A.. Equivariant Gromov-Witten invariants. Internat. Math. Res. Notices, 1996, 1996(13): 613-663

[17]

Graber T., Pandharipande R.. Localization of virtual classes. Invent. Math., 1999, 13(2): 487-518

[18]

Guffin, J. and Sharpe, E., A-twisted Landau-Ginzburg models, hep-th. arXiv: 0801.3836.

[19]

Huang M. X., Klemm A., Quackenbush S.. Topological string theory on compact Calabi-Yau: Modularity and boundary conditions. Lecture Notes Phys., 2009, 757: 45-102

[20]

Kiem Y. H., Li J.. Localized virtual cycle by cosections. J. Amer. Math. Soc., 2013, 26(4): 1025-1050

[21]

Li J.. A Degeneration formula of GW-invariants. J. Differential Geom., 2002, 60(2): 177-354

[22]

Li A. M., Ruan Y. B.. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds. Invent. Math., 2001, 145(1): 151-218

[23]

Li J., Tian G.. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Amer. Math. Soc., 1998, 11(1): 119-174

[24]

Li J., Zinger A.. On the genus-one Gromov-Witten invariants of complete intersections. J. Differential Geom., 2009, 82(3): 641-690

[25]

Lian B., Liu K. F., Yau S. T.. Mirror principle. I. Asian J. Math., 1997, 1(4): 729-763

[26]

Marian A., Oprea D., Pandharipande R.. The moduli space of stable quotients. Geom. Topol., 2011, 15(3): 1651-1706

[27]

Maulik D., Pandharipande R.. A topological view of Gromov-Witten theory. Topology, 2006, 45(5): 887-918

[28]

Polishchuk A., Vaintrob A.. Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics, 2000

[29]

Witten E.. Phases of N = 2 theories in two dimensions. Nuclear Physics B, 1993, 403(1–2): 159-222

[30]

Zinger A.. Standard versus reduced genus-one Gromov-Witten invariants. Geom. Topol., 2008, 12(2): 1203-1224

AI Summary AI Mindmap
PDF

344

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/