PDF
Abstract
This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: $c\left( {x,y} \right) = \mathop {\inf }\limits_{\begin{array}{*{20}{c}} {x\left( 0 \right) = x} \\ {x\left( 1 \right) = y} \\ {u \in U} \end{array}} \int_0^1 {L\left( {x\left( s \right),u\left( {x\left( s \right),s} \right),s} \right)ds} ,$ where U is a control set, and x satisfies the ordinary equation $\dot x\left( s \right) = f\left( {x\left( s \right),u\left( {x\left( s \right),s} \right)} \right).$ It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation: $\left\{ {_{V\left( {0,x} \right) = {\phi _0}\left( x \right).}^{{V_t}\left( {t,x} \right) + \mathop {\sup }\limits_{u \in U} \left\langle {{V_x}\left( {t,x} \right),f\left( {x,u\left( {x\left( t \right),t} \right),t} \right) - L\left( {x\left( t \right),u\left( {x\left( t \right),t} \right),t} \right)} \right\rangle = 0,}} \right.$
Keywords
Optimal control
/
Hamilton-Jacobi equation
/
Characteristic curve
/
Viscosity solution
/
Optimal transportation
/
Kantorovich pair
/
Initial transport measure
Cite this article
Download citation ▾
Ji Li, Jianlu Zhang.
Optimal transportation for generalized Lagrangian.
Chinese Annals of Mathematics, Series B, 2017, 38(3): 857-868 DOI:10.1007/s11401-017-1100-y
| [1] |
Ambrosio L.. Lecture Notes on Optimal Transport Problems Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics, 2004, 1812: 1-52
|
| [2] |
Bernard P., Buffoni B.. Optimal mass transportation and Mather theory. J. Eur. Math. Soc., 2007, 9: 85-121
|
| [3] |
Cannarsa P., Sinestrari C.. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control Progress in Nonlinear Differential Equations and Their Applications, 2004
|
| [4] |
De Passcale L., Gelli M. S., Granieri L.. Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calculus of Variations and Partial Differential Equations, 2006, 27(1): 1-23
|
| [5] |
Evans L. C., Gomes D.. Linear programming interpretations of Mather’s variational principle, Attribute to J. L. Lions, Esaim Control Optim. Calc. Var., 2002, 8: 693-702
|
| [6] |
Granieri L.. On action minimizing measures for the Monge-Kantorovich problem. NoDEA, 2007, 14(1–2): 125-152
|
| [7] |
Kantorovich L. V.. On the transfer of mass. Dokl. Akad. Nauk. USSR, 1942, 37: 227-229
|
| [8] |
Kantorovich L. V.. On a problem of Monge. Uspekhi Mat. Nauk., 1948, 3: 225-226
|
| [9] |
Liberzon, D., Calculus of Variations and Optimal Control Theory: A Concise Introduction, ISBN: 97814008426431.
|
| [10] |
Pratelli A.. Equivalence between some definitions for the optimal mass transportation problem and for the transport density on manifolds. Annali di Math. Pura App., 2004
|
| [11] |
Su, X. F. and Yan, J., Weak KAM theorem for Hamilton-Jacobi equations, preprint. arXiv: 1312.1600
|
| [12] |
Villani C.. Topics in Optimal Transportation, American Mathematical Society, 2003
|
| [13] |
Wang, L. and Yan, J., Uniqueness of viscosity solutions of Hamilton-Jacobi equations, Weak KAM theory for general Hamition-Jacobi equations II: The fundamental solution under Lipschitz conditions. arXiv: 1408.3791v1
|
| [14] |
Wolansky, G., Optimal transportation in the presence of a prescribed pressure field. arXiv: mathph10306070
|
| [15] |
Young L. C.. Lectures on the Calculus of Variations and Optimal Control Theory, 2nd edition, Chelsea, 1980. Econometrica, 1971, 39(3): 653
|