Optimal transportation for generalized Lagrangian

Ji Li , Jianlu Zhang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 857 -868.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 857 -868. DOI: 10.1007/s11401-017-1100-y
Article

Optimal transportation for generalized Lagrangian

Author information +
History +
PDF

Abstract

This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: $c\left( {x,y} \right) = \mathop {\inf }\limits_{\begin{array}{*{20}{c}} {x\left( 0 \right) = x} \\ {x\left( 1 \right) = y} \\ {u \in U} \end{array}} \int_0^1 {L\left( {x\left( s \right),u\left( {x\left( s \right),s} \right),s} \right)ds} ,$ where U is a control set, and x satisfies the ordinary equation $\dot x\left( s \right) = f\left( {x\left( s \right),u\left( {x\left( s \right),s} \right)} \right).$ It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation: $\left\{ {_{V\left( {0,x} \right) = {\phi _0}\left( x \right).}^{{V_t}\left( {t,x} \right) + \mathop {\sup }\limits_{u \in U} \left\langle {{V_x}\left( {t,x} \right),f\left( {x,u\left( {x\left( t \right),t} \right),t} \right) - L\left( {x\left( t \right),u\left( {x\left( t \right),t} \right),t} \right)} \right\rangle = 0,}} \right.$

Keywords

Optimal control / Hamilton-Jacobi equation / Characteristic curve / Viscosity solution / Optimal transportation / Kantorovich pair / Initial transport measure

Cite this article

Download citation ▾
Ji Li, Jianlu Zhang. Optimal transportation for generalized Lagrangian. Chinese Annals of Mathematics, Series B, 2017, 38(3): 857-868 DOI:10.1007/s11401-017-1100-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosio L.. Lecture Notes on Optimal Transport Problems Mathematical Aspects of Evolving Interfaces. Lecture Notes in Mathematics, 2004, 1812: 1-52

[2]

Bernard P., Buffoni B.. Optimal mass transportation and Mather theory. J. Eur. Math. Soc., 2007, 9: 85-121

[3]

Cannarsa P., Sinestrari C.. Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control Progress in Nonlinear Differential Equations and Their Applications, 2004

[4]

De Passcale L., Gelli M. S., Granieri L.. Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calculus of Variations and Partial Differential Equations, 2006, 27(1): 1-23

[5]

Evans L. C., Gomes D.. Linear programming interpretations of Mather’s variational principle, Attribute to J. L. Lions, Esaim Control Optim. Calc. Var., 2002, 8: 693-702

[6]

Granieri L.. On action minimizing measures for the Monge-Kantorovich problem. NoDEA, 2007, 14(1–2): 125-152

[7]

Kantorovich L. V.. On the transfer of mass. Dokl. Akad. Nauk. USSR, 1942, 37: 227-229

[8]

Kantorovich L. V.. On a problem of Monge. Uspekhi Mat. Nauk., 1948, 3: 225-226

[9]

Liberzon, D., Calculus of Variations and Optimal Control Theory: A Concise Introduction, ISBN: 97814008426431.

[10]

Pratelli A.. Equivalence between some definitions for the optimal mass transportation problem and for the transport density on manifolds. Annali di Math. Pura App., 2004

[11]

Su, X. F. and Yan, J., Weak KAM theorem for Hamilton-Jacobi equations, preprint. arXiv: 1312.1600

[12]

Villani C.. Topics in Optimal Transportation, American Mathematical Society, 2003

[13]

Wang, L. and Yan, J., Uniqueness of viscosity solutions of Hamilton-Jacobi equations, Weak KAM theory for general Hamition-Jacobi equations II: The fundamental solution under Lipschitz conditions. arXiv: 1408.3791v1

[14]

Wolansky, G., Optimal transportation in the presence of a prescribed pressure field. arXiv: mathph10306070

[15]

Young L. C.. Lectures on the Calculus of Variations and Optimal Control Theory, 2nd edition, Chelsea, 1980. Econometrica, 1971, 39(3): 653

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/