Fractional Sobolev-Poincaré inequalities in irregular domains

Chang-Yu Guo

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 839 -856.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 839 -856. DOI: 10.1007/s11401-017-1099-0
Article

Fractional Sobolev-Poincaré inequalities in irregular domains

Author information +
History +
PDF

Abstract

This paper is devoted to the study of fractional (q, p)-Sobolev-Poincaré in- equalities in irregular domains. In particular, the author establishes (essentially) sharp fractional (q, p)-Sobolev-Poincaré inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional (q, p)-Sobolev-Poincaré inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P., Sobolev-Poincaré implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.

Keywords

Fractional Sobolev-Poincaré inequality / s-John domain / Quasihyperbolic boundary condition

Cite this article

Download citation ▾
Chang-Yu Guo. Fractional Sobolev-Poincaré inequalities in irregular domains. Chinese Annals of Mathematics, Series B, 2017, 38(3): 839-856 DOI:10.1007/s11401-017-1099-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams D. R., Hedberg L. I.. Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, 1996, Berlin: Springer-Verlag

[2]

Buckley S., Koskela P.. Sobolev-Poincaré implies John. Math. Res. Lett., 1995, 2(5): 577-593

[3]

Dyda B., Ihnatsyeva L., Vähäkangas A. V.. On improved Sobolev-Poincaré inequalities. Ark. Mat., 2015

[4]

Gehring F. W., Osgood B. G.. Uniform domains and the quasihyperbolic metric. J. Analyse Math., 1979, 36: 50-74

[5]

Gehring F. W., Palka B. P.. Quasiconformally homogeneous domains. J. Analyse Math., 1976, 30: 172-199

[6]

Guo C. Y., Koskela P.. Generalized John disks. Cent. Eur. J. Math., 2014, 12(2): 349-361

[7]

Hajlasz P., Koskela P.. Isoperimetric inequalities and imbedding theorems in irregular domains. J. London Math. Soc., 1998, 58(2): 425-450

[8]

Hajlasz P., Koskela P.. Sobolev met Poincaré. Mem. Amer. Math. Soc., 2000, 145(688): 101

[9]

Hurri-Syrjänen R., Vähäkangas A. V.. On fractional Poincaré inequalities. J. Anal. Math., 2013, 120: 85-104

[10]

Jiang R., Kauranen A.. A note on “quasihyperbolic boundary conditions and Poincaré domains”. Math. Ann., 2013, 357(3): 1199-1204

[11]

John F.. Rotation and strain. Comm. Pure Appl. Math., 1961, 14: 391-413

[12]

Kilpeläinen T., Malý J.. Sobolev inequalities on sets with irregular boundaries. Z. Anal. Anwendungen, 2000, 19(2): 369-380

[13]

Koskela P., Onninen J., Tyson J. T.. Quasihyperbolic boundary conditions and Poincaré domains. Math. Ann., 2002, 323(4): 811-830

[14]

Martio O., Sarvas J.. Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math., 1979, 4(2): 383-401

[15]

Maz’ya V. G.. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl., 1960, 1: 882-885

[16]

Maz’ya V. G.. Sobolev spaces with applications to elliptic partial differential equations, 2011

[17]

Smith W., Stegenga D. A.. Hölder and Poincaré domains. Trans. Amer. Math. Soc., 1990, 319: 67-100

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/