Blow up for initial-boundary value problem of wave equation with a nonlinear memory in 1-D

Ning-An Lai , Jianli Liu , Jinglei Zhao

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 827 -838.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 827 -838. DOI: 10.1007/s11401-017-1098-1
Article

Blow up for initial-boundary value problem of wave equation with a nonlinear memory in 1-D

Author information +
History +
PDF

Abstract

The present paper is devoted to studying the initial-boundary value problem of a 1-D wave equation with a nonlinear memory: ${u_{tt}} - {u_{xx}} = \frac{1}{{\Gamma \left( {1 - \gamma } \right)}}\int_0^t {{{\left( {t - s} \right)}^{ - \gamma }}{{\left| {u\left( s \right)} \right|}^p}ds} .$ The blow up result will be established when p > 1 and 0 < γ < 1, no matter how small the initial data are, by introducing two test functions and a new functional.

Keywords

Blow up / Wave equation / Nonlinear memory / Initial-boundary value problem

Cite this article

Download citation ▾
Ning-An Lai, Jianli Liu, Jinglei Zhao. Blow up for initial-boundary value problem of wave equation with a nonlinear memory in 1-D. Chinese Annals of Mathematics, Series B, 2017, 38(3): 827-838 DOI:10.1007/s11401-017-1098-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Du Y., Metcalfe J., Sogge C. D., Zhou Y.. Concerning the Strauss’ conjecture and almost global existence for nonlinear Dirichlet-wave equations in 4-dimensions. Comm. Partial Differential Equations, 2008, 33(7–9): 1487-1506

[2]

Fino, A. Z., Georgiev, V. and Kirane, M., Finite time blow-up for a wave equation with a nonlocal nonlinearity, aiXiv: 1008.4219v1.

[3]

Georgiev V., Lindblad H., Sogge C. D.. Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math., 1997, 119(6): 1291-1319

[4]

Glassey R. T.. Finite-time blow-up for solutions of nonlinear wave equations. Math. Z., 1981, 177: 323-340

[5]

Glassey R. T.. Existence in the large for □u = F(u) in two space dimensions. Math. Z., 1981, 178: 233-261

[6]

Han W.. Blow up of solutions to one dimensional initial-boundary value problems for semilinear wave equations with variable coefficients. J. Partial Differ. Equ., 2013, 26(2): 138-150

[7]

Hidano K., Metcalfe J., Smith H. F. On abstract Strichartz estimates and the Strauss’ conjecture for nontrapping obstacles. Trans. Amer. Math. Soc., 2010, 362(5): 2789-2809

[8]

Jiao H., Zhou Z.. An elementary proof of the blow up for semilinear wave equation in high space dimensions. J. Differential Equations, 2003, 189(2): 355-365

[9]

John F.. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 1979, 28(1–3): 235-268

[10]

Lai N. A., Zhou Y.. An elementary proof of Strauss’ conjecture. J. Funct. Anal., 2014, 267(5): 1364-1381

[11]

Lai N. A., Zhou Y.. Finite time blow up to critical semilinear wave equation outside the ball in 3-D. Nonlinear Analysis, 2015, 125: 550-560

[12]

Li X. F., Wang G. X.. Blow up of solutions to nonlinear wave equation in 2-D exterior domains. Arch. Math., 2012, 98: 265-275

[13]

Lindblad H., Sogge C. D.. Long-time existence for small amplitude semilinear wave equations. Amer. J. Math., 1996, 118(5): 1047-1135

[14]

Rammaha M. A.. Finite-time blow up for nonlinear wave equations in high dimensions. Comm. Partial Differential Equations, 1987, 12(6): 677-700

[15]

Schaeffer J.. The equation □u = |u|p for the critical value of p. Proc. Roy. Soc. Edinburgh Sect. A, 1985, 101(1–2): 31-44

[16]

Sideris T. C.. Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations, 1984, 52: 378-406

[17]

Smith H. F., Sogge C. D., Wang C. B.. Strichartz estimates for Dirichlet-wave equations in two dimensions with applications. Trans. Amer. Math. Soc., 2012, 364: 3329-3347

[18]

Strauss W. A.. Nonlinear scattering theory at low energy. J. Funct. Anal., 1981, 41: 110-133

[19]

Tataru D.. Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Amer. Math. Soc., 2001, 353(2): 795-807

[20]

Yordanov B., Zhan Q. S.. Finite-time blowup for wave equations with a potential. SIAM J. Math. Anal., 2005, 36(5): 1426-1433

[21]

Yordanov B., Zhan Q. S.. Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal., 2006, 231(2): 361-374

[22]

Zhou Y.. Cauchy problem for semilinear wave equations with small data in four space dimensions. J. Partial Differential Equations, 1995, 8(2): 135-144

[23]

Zhou Y.. Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin. Ann. Math. Ser. B, 2007, 28(2): 205-212

[24]

Zhou Y., Han W.. Blow-up of solutions to semilinear wave equations with variable coefficients and boundary. J. Math. Anal. Appl., 2011, 374: 585-601

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/