Singularity of the extremal solution for supercritical biharmonic equations with power-type nonlinearity

Baishun Lai , Zhengxiang Yan , Yinghui Zhang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 815 -826.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 815 -826. DOI: 10.1007/s11401-017-1097-2
Article

Singularity of the extremal solution for supercritical biharmonic equations with power-type nonlinearity

Author information +
History +
PDF

Abstract

Let B ⊂ ℝ n be the unit ball centered at the origin. The authors consider the following biharmonic equation: $\left\{ {\begin{array}{*{20}{c}} {{\Delta ^2}u = \lambda {{\left( {1 + u} \right)}^p}}&{in \mathbb{B},} \\ {u = \frac{{\partial u}}{{\partial \nu }} = 0}&{on\partial \mathbb{B},} \end{array}} \right.$ where $p > \frac{{n + 4}}{{n - 4}}$ and v is the outward unit normal vector. It is well-known that there exists a λ* > 0 such that the biharmonic equation has a solution for λ ∈ (0, λ*) and has a unique weak solution u* with parameter λ = λ*, called the extremal solution. It is proved that u* is singular when n ≥ 13 for p large enough and satisfies $u* \leqslant {r^{ - \frac{4}{{p - 1}}}} - 1$ on the unit ball, which actually solve a part of the open problem left in [Dàvila, J., Flores, I., Guerra, I., Multiplicity of solutions for a fourth order equation with power-type nonlinearity, Math. Ann., 348(1), 2009, 143–193].

Keywords

Minimal solutions / Regularity / Stability / Fourth order

Cite this article

Download citation ▾
Baishun Lai, Zhengxiang Yan, Yinghui Zhang. Singularity of the extremal solution for supercritical biharmonic equations with power-type nonlinearity. Chinese Annals of Mathematics, Series B, 2017, 38(3): 815-826 DOI:10.1007/s11401-017-1097-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crandall M. G., Rabinawitz P. H.. Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Ration. Mech. Anal., 1975, 58(3): 207-218

[2]

Joseph D. D., Lundgren T. S.. Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal., 1973, 49(4): 241-268

[3]

Lions P. L.. On the existence of positive solutions of semilinear elliptic equations. SIAM Rev., 1982, 24(4): 441-467

[4]

Martel Y.. Uniqueness of weak extremal solutions for nonlinear elliptic problems. Houston J. Math., 1997, 23: 161-168

[5]

Mignot F., Puel J. P.. Solution radiale singulière de −Δu = λe u. C. R. Acad. Sci. Paris Sér. I, 1988, 307: 379-382

[6]

Berchio E., Gazzola F.. Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities. Electronic J. Differ. Equ., 2005, 2005(34): 1-20

[7]

Ferrero A., Grunau H. C.. The Dirichlet problem for supercritical biharmonic equations with powertype nonlinearity. J. Differ. Equ., 2007, 234(2): 582-606

[8]

Ferrero A., Grunau H. C., Karageorgis P.. Supercritical biharmonic equations with power-type nonlinearity. Annali di Matematica, 2009, 188(1): 171-185

[9]

Dàvila J., Flores I., Guerra I.. Multiplicity of solutions for a fourth order equation with power-type nonlinearity. Math. Ann., 2009, 348(1): 143-193

[10]

Boggio T.. Sulle funzioni di Freen d’ordine m. Rend. Circ. Mat. Palermo, 1905, 20: 97-135

[11]

Arioli G., Gazzola F., Grunau H. C., Mitidieri E.. A semilinear fourth order elliptic problem with exponential nonlinearity. Siam J. Math. Anal., 2005, 36(4): 1226-1258

[12]

Brezis H., Vazquez J. L.. Blow up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complutense Madrid, 1997, 10(2): 443-469

[13]

Ghoussoub N., Moradifam A.. Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann., 2011, 349(1): 1-57

[14]

Moreau J. J.. Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. C. R. Acad. Sci. Paris, 1962, 255: 238-240

[15]

Cown C., Esposito P., Ghoussoub N., Moradifam A.. The critical dimension for a fourth order elliptic problem with singular nonlineartiy. Arch. Ration. Mech. Anal., 2010, 198(3): 763-787

[16]

Moradifam A.. The singular extremal solutions of the bi-laplacian with exponential nonlinearity. Proc. Amer. Math. Soc., 2010, 138(4): 1287-1293

[17]

Dàvila J., Dupaigne L., Guerra I., Montenegro M.. Stable solutions for the bilaplacian with exponential nonlinearity. Siam J. Math. Anal., 2007, 39(2): 565-592

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/