Global well-posedness of incompressible Navier-Stokes equations with two slow variables

Weimin Peng , Yi Zhou

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 787 -794.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 787 -794. DOI: 10.1007/s11401-017-1095-4
Article

Global well-posedness of incompressible Navier-Stokes equations with two slow variables

Author information +
History +
PDF

Abstract

In this paper, the global well-posedness of the three-dimensional incompressible Navier-Stokes equations with a linear damping for a class of large initial data slowly varying in two directions are proved by means of a simpler approach.

Keywords

Global well-posedness / Incompressible Navier-Stokes equations / Slow variables

Cite this article

Download citation ▾
Weimin Peng, Yi Zhou. Global well-posedness of incompressible Navier-Stokes equations with two slow variables. Chinese Annals of Mathematics, Series B, 2017, 38(3): 787-794 DOI:10.1007/s11401-017-1095-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cannone M.. Chapter 3 Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Handbook of Mathematical Fluid Dynamics, 2004 161-244

[2]

Cannone M., Meyer Y., Planchon F.. Solutions auto-similaries des équations de Navier-Stokes, Séminaire sur les Equations aux Dérivées Partielles, 1993–1994, 1994

[3]

Chemin J. Y., Gallagher I.. Large, global solutions to the Navier-Stokes equations, slowly varying in one direction. Trans. Amer. Math. Soc., 2010, 362(6): 2859-2873

[4]

Chemin J. Y., Gallagher I., Paicu M.. Global regularity for some classes of large solutions to the Navier-Stokes equations. Ann. of Math., 2011, 173: 983-1012

[5]

Chemin J. Y., Paicu M., Zhang P.. Global large solutions to 3-D inhomogeneous Navier-Stokes system with one slow variable. J. Differential Equations, 2014, 256(1): 223-252

[6]

Chemin J. Y., Zhang P.. On the global well-posedness to the 3-D incompressible anisotropic Navier- Stokes equations. Comm. Math. Phys., 2007, 272(2): 529-566

[7]

Clay mathematics institute, Millennium prize problems, http://www.claymath.org/millenniumproblems/navier%E2%80%93stokes-equation

[8]

Fujita H., Kato T.. On the Navier-Stokes initial value problem, I. Arch. Ration. Mech. Anal., 1964, 16: 269-315

[9]

Giga Y., Miyakama T.. Solutions in L r of the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal., 1985, 89(3): 267-281

[10]

Kato T.. Strong L p-solutions of the Navier-Stokes equations in Rm with applications to weak solutions. Math. Z., 1984, 187(4): 471-480

[11]

Koch H., Tataru D.. Well-posedness for the Navier-Stokes equations. Adv. Math., 2001, 157(1): 22-35

[12]

Leray J.. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 1934, 63: 193-248

[13]

Weissler F. B.. The Navier-Stokes initial value problem in L p. Arch. Ration. Mech. Anal., 1980, 74: 219-230

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/