Quasi-periodic solutions for the derivative nonlinear Schrödinger equation with finitely differentiable nonlinearities
Meina Gao , Kangkang Zhang
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 759 -786.
Quasi-periodic solutions for the derivative nonlinear Schrödinger equation with finitely differentiable nonlinearities
The authors are concerned with a class of derivative nonlinear Schrödinger equation $i{u_t} + {u_{xx}} + i \epsilon f\left( {u,\bar u,\omega t} \right){u_x} = 0,\left( {t,x} \right) \in \mathbb{R} \times \left[ {0,\pi } \right],$ subject to Dirichlet boundary condition, where the nonlinearity f(z 1, z 2, ϕ) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.
Derivative NLS / KAM theory / Newton iterative scheme / Reduction theory / Quasi-periodic solutions / Smoothing techniques
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
/
| 〈 |
|
〉 |