Quasi-periodic solutions for the derivative nonlinear Schrödinger equation with finitely differentiable nonlinearities

Meina Gao , Kangkang Zhang

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 759 -786.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 759 -786. DOI: 10.1007/s11401-017-1094-5
Article

Quasi-periodic solutions for the derivative nonlinear Schrödinger equation with finitely differentiable nonlinearities

Author information +
History +
PDF

Abstract

The authors are concerned with a class of derivative nonlinear Schrödinger equation $i{u_t} + {u_{xx}} + i \epsilon f\left( {u,\bar u,\omega t} \right){u_x} = 0,\left( {t,x} \right) \in \mathbb{R} \times \left[ {0,\pi } \right],$ subject to Dirichlet boundary condition, where the nonlinearity f(z 1, z 2, ϕ) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.

Keywords

Derivative NLS / KAM theory / Newton iterative scheme / Reduction theory / Quasi-periodic solutions / Smoothing techniques

Cite this article

Download citation ▾
Meina Gao, Kangkang Zhang. Quasi-periodic solutions for the derivative nonlinear Schrödinger equation with finitely differentiable nonlinearities. Chinese Annals of Mathematics, Series B, 2017, 38(3): 759-786 DOI:10.1007/s11401-017-1094-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldi P., Berti M., Montalto R.. KAM for quasi-linear KdV. C. R. Math. Acad. Sci. Paris, 2014, 352(7–8): 603-607

[2]

Berti M., Biasco P., Procesi M.. KAM theory for the Hamiltonian derivative wave equation. Ann. Sci. C. Norm. Supr., 2013, 46(2): 301-373

[3]

Berti M., Biasco P., Procesi M.. KAM theory for reversible derivative wave equations. Arch. Ration. Mech. Anal., 2014, 212: 905-955

[4]

Berti M., Bolle P.. Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity, 2012, 25: 2579-2613

[5]

Berti M., Bolle P.. Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential. J. Euro. Math. Soc., 2013, 15(1): 229-286

[6]

Berti M., Bolle P., Procesi M.. An abstract Nash-Moser theorem with parameters and applications to PDEs. Ann. I. H. Poincaré-AN, 2010, 27: 377-399

[7]

Bourgain J.. Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations, 1996

[8]

Bourgain J.. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math., 1998, 148(2): 363-439

[9]

Chierchia L., Qian D.. Moser’s theorem for lower dimensional tori. J. Differential Equation, 2004, 206: 55-93

[10]

Craig W., Wayne C. E.. Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math., 1993, 46: 1409-1498

[11]

Eliasson H. L., Kuksin S. B.. KAM for nonlinear Schrödinger equation. Ann. of Math., 2010, 172: 371-435

[12]

Geng J., Xu X., You J.. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Advances Math., 2011, 226: 5361-5402

[13]

Kappeler T., Pöschel J.. KdV & KAM, 2003, Berlin, Heidelberg: Springer-Verlag

[14]

Kuksin S. B.. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funct. Anal. Appl., 1987, 21: 192-205

[15]

Kuksin S. B.. On small-denominators equations with large variable coefficients. J. Appl. Math. Phys. ZAMP, 1997, 48: 262-271

[16]

Kuksin S. B.. Analysis of Hamiltonian PDEs, 2000, Oxford: Oxford Univ. Press

[17]

Liu J., Yuan X.. Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient. Commun. Pure Appl. Math., 2010, 63: 1145-1172

[18]

Liu J., Yuan X.. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys., 2011, 307: 629-773

[19]

Liu J., Yuan X.. KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions. J. Differential Equations, 2014, 256: 1627-1652

[20]

Moser J.. A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. USA, 1961, 47: 1824-1831

[21]

Moser J.. On invariant curves of area-preserving mapping of annulus. Nachr. Akad Wiss. Gottingen Math. Phys., 1962, KI(II): 1-20

[22]

Moser J.. A rapidly convergent iteration method and non-linear partial differential equations-I & II. Ann. Sc. Norm. Super. Pisa (3), 1966, 20: 265-315

[23]

Moser J.. On the construction of almost periodic solutions for ordinary differential equations, 1969 60-67

[24]

Nash J.. The imbedding problem for Riemannian manifolds. Ann. of Math., 1956, 63(2): 20-63

[25]

Pöschel J.. Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math., 1982, 35: 653-695

[26]

Rüssmann H.. Kleine Nenner. I. Ber invariante Kurven differenzierbarer Abbildungen eines Kreisringes (in German). Nachr. Akad. Wiss. Göttingen Math. Phys. Kl., 1970, II: 67-105

[27]

Salamon D.. The Kolmogorov-Arnold-Moser theorem. Math. Phys. Electron. J., 2004, 10: 3-37

[28]

Salamon D., Zehnder E.. KAM theory in configuration space. Comm. Math. Helv., 1989, 64: 84-132

[29]

Wayne C. E.. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys., 1990, 127: 479-528

[30]

Yuan X., Zhang K.. A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation. J. Math. Phys., 2013, 54: 052701

[31]

Zhang J.. On lower dimensional invariant tori in Cd reversible system. Chin. Ann. Math. Ser. B, 2008, 29(5): 459-486

[32]

Zhang J., Gao M., Yuan X.. KAM tori for reversible partial differtial equations. Nonliearity, 2011, 24: 1189-1228

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/