Exact boundary controllability on a tree-like network of nonlinear planar Timoshenko beams

Qilong Gu , Günter Leugering , Tatsien Li

Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 711 -740.

PDF
Chinese Annals of Mathematics, Series B ›› 2017, Vol. 38 ›› Issue (3) : 711 -740. DOI: 10.1007/s11401-017-1092-7
Article

Exact boundary controllability on a tree-like network of nonlinear planar Timoshenko beams

Author information +
History +
PDF

Abstract

This paper concerns a system of equations describing the vibrations of a planar network of nonlinear Timoshenko beams. The authors derive the equations and appropriate nodal conditions, determine equilibrium solutions and, using the methods of quasilinear hyperbolic systems, prove that for tree-like networks the natural initial-boundary value problem admits semi-global classical solutions in the sense of Li [Li, T. T., Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Ser. Appl. Math., vol 3, American Institute of Mathematical Sciences and Higher Education Press, 2010] existing in a neighborhood of the equilibrium solution. The authors then prove the local exact controllability of such networks near such equilibrium configurations in a certain specified time interval depending on the speed of propagation in the individual beams.

Keywords

Nonlinear Timoshenko beams / Tree-like networks / Exact boundary controllability / Semi-global classical solutions

Cite this article

Download citation ▾
Qilong Gu, Günter Leugering, Tatsien Li. Exact boundary controllability on a tree-like network of nonlinear planar Timoshenko beams. Chinese Annals of Mathematics, Series B, 2017, 38(3): 711-740 DOI:10.1007/s11401-017-1092-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asghari M., Kahrobaiyan M. H., Ahmadian M. T.. A nonlinear Timoshenko beam formulation based on the modified couple stress theory. International Journal of Engineering Science, 2010, 48: 1749-1761

[2]

Long H.. Contrôle frontière, stabilisation et synchronisation pour des systèmes de lois de bilan en dimension un d’espace, 2015

[3]

Horn, M. A. and Leugering, G., An overview of modelling challenges for a nonlinear plate-beam model, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 63(5–7), 1529–1539.

[4]

Lagnese J. E., Leugering G.. Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Differ. Equations, 1991, 91(2): 355-388

[5]

Lagnese J. E., Leugering G., Schmidt E. J. P. G.. Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, 1994

[6]

Lagnese J. E., Leugering G., Schmidt E. J. P. G.. Control of planar networks of Timoshenko beams. SIAM J. Control Optimization, 1993, 31(3): 780-811

[7]

Lagnese J. E., Leugering G.. Modelling of dynamic networks of thin thermoelastic beams. Mathematical Methods in the Applied Sciences, 1993, 16: 327-358

[8]

Lagnese J. E., Leugering G.. Birkäuser Verlag, 1994

[9]

Leugering G., Schmidt E. J. P. G.. On the control of networks of vibrating strings and beams, 1989

[10]

Leugering G., Schmidt E. J. P. G.. On exact controllability of networks of nonlinear elastic strings in 3-dimensional space. Chin. Ann. Math. Ser. B, 2012, 33(1): 33-60

[11]

Gu Q. L., Li T. T.. Exact bounmdary controllability for quasilinear wave equations in a tree-like planar network of strings. Ann. I. H. Poincae AN, 2009, 26: 2373-2384

[12]

Munoz Rivera J. E., Racke R.. Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability, 2002

[13]

Li T. T.. Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS Ser. Appl. Math., 2010

[14]

Wang K.. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B, 2011, 32(6): 803-822

[15]

Wang Z. Q.. Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. Ser. B, 2006, 27(6): 643-656

[16]

Wempner, G., Mechanics of solids with applications to thin bodies, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics of Elastic and Inelastic Solids, 2. Alphen aan den Rijn, The Netherlands-Rockville, Maryland: Sijthoff & Noordhoff. XVII, 633 pages.

[17]

Zhong H. H., Guo Q.. Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method. Nonlinear Dynamics, 2003, 32: 223-234

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/